
Design of a Reconfigurable and Self-

contained Automated Checkout System

Jaya G. Nair, C. Radhakrishna Pillai, S. Hemachandran, Dr. P. P. Mohan Lal

ISRO Inertial Systems Unit, Indian Space Research Organisation,

Vattiyoorkavu, Thiruvananthapuram

g_jaya@vssc.gov.in

Abstract:

Computerized Checkout Systems are used for

the calibration and performance evaluation of

navigation systems. These checkout systems are

designed to support fool-proof operations, are self-

contained, require minimum intervention by the

operators and it is possible to use them for different

missions without change in operating procedures. The

paper discusses the features in the design that lead to the

development of such an automated checkout system.

Key words: Checkout Systems, Automation, Safety,

Fault-tolerance.

I. INTRODUCTION

Navigation systems used in launch vehicles

are complex and hence require computerized

Checkout Systems for conducting calibration and

performance evaluation tests. Design and

development of such an automated checkout

system for a Redundant Strap-down Inertial

Navigation System (RESINS) which is used for all

ISRO-LV missions is described in this paper. The

navigation system comprises of sensors,

electronics, interfaces and computers that do the

navigation computations. The checkout systems

provide all the necessary interfaces to connect the

test articles and implement the different test

procedures. Interfaces for powering, data

acquisition and health monitoring are provided.

This translates to implementing 2 Mil-1553 bus

interfaces, 64 analog input channels, 16 analog

output channels, 48 channels of digital input and

outputs, 22 pulse simulator channels, 96

multiplexer channels, 20 powering relays, 2 serial

interfaces and 7 DC power supplies.

 The test and evaluation schedule for a

navigation system comprises of a sequence of tests

under different environmental conditions. The

checkout systems are typically operated by test

personnel. The checkout systems are required to be

available to test navigation systems belonging to

different missions concurrently. The checkout

systems are typically used for many years which

translate to having a long maintenance phase after

the initial design and deployment. To efficiently

implement the different requirements, the checkout

systems must have features of self-containment,

reconfiguration and automation. The elements of

design and mechanisms of implementation which

lead to the realization of these features are

discussed here.

Motivation for the design features are given

in section II. Design of mechanisms is covered in

section III. Details of implementation are presented

in section IV. The development approach and

conclusions are given in sections V and VI

respectively.

II. REQUIREMENT AND MOTIVATION FOR

FEATURES

The navigation systems for different

missions have broadly the same test requirements

but there are differences in many specifics. These

include changes in the format of data, software

used in navigation processors, test conditions,

methodology used for computation of test results

etc. The checkout systems must support the

different missions concurrently.

Different units of checkout systems are

deployed to cater to tests at different test stations

including environmental test-beds. Differences in

the hardware configuration between the different

units need to be supported seamlessly. Any failure

and reallocation of hardware interfaces during the

long maintenance phase must be absorbed. The

feature of reconfiguration is needed in the

checkout system to support all the above

requirements.

The checkout systems are operated by

people who are not necessarily navigation experts.

Hence the system should be equipped to support

fool-proof operations with minimum intervention

required from the test personnel. The feature of

automation is needed to realize such a

requirement. Automation means that issues of

security, safety and fault tolerance must also be

addressed without need for conscious action from

the operator. Another requirement is for the

operating procedure to remain the same

irrespective of the changing functionality with

respect to missions and test-beds. This requirement

gives rise to the need for both the features of

reconfiguration and automation.

Efficiency of usage motivates the need to

have all facilities to conduct tests and analyze the

results using the checkout system itself. Ease of use

of the checkout system is of prime concern since

there is need to physically move the system

between test-beds during the course of the

performance evaluation of the test articles. The

need for the checkout systems to be self-contained

both in terms of functionality and physical

configuration is the offshoot of these concerns.

Fig [1] shows the context under which the

checkout system operates. The requirements that

lead to features of reconfiguration, automation and

self-containment are indicted by letters R, A and S

respectively on top of the boxes.

Fig [1]: Context diagram for Checkout System

III. DESIGN OF MECHANISMS TO REALISE

THE FEATURES

The different mechanisms used to realize the

features identified are detailed here.

1. Reconfiguration

To support reconfiguration, both hardware

and software mechanisms are employed.

Modular and re-configurable hardware

interfaces are used. Additional spare channels are

provided in the hardware interfaces. Device drivers

are designed to implement common APIs

independent of the features of any particular

hardware. These mechanisms make it possible to

support hardware failures, at both channel and card

level. Updates to hardware interfaces during the

long maintenance phase are also taken care of in

this manner.

All factors which may undergo change are

captured as parameters to the checkout software.

The values of these parameters are specified using

a set of configuration files. These files capture all

the different scenarios of usage with respect to

missions, checkout units and test beds. The test-

configuration for a particular invocation of the

software gets specified by a combination of the

identity of the user, command-line arguments and

selections made by the user from a list of options

shown. Once the configuration of test is specified,

the software uses the set of configuration files

applicable to define the values of all parameters.

Hence the software is able to reconfigure itself. It

is possible to completely change the look and feel

of the checkout software in this manner.

The reconfiguration applies to fields shown

in the Graphical User Interface (GUI) displayed,

the menu of options shown, channels used in data

acquisition, data processing methodology used,

reference values used to check test results etc. This

feature also enables support for different modes of

operation: like test and evaluation mode, package

designer’s mode and checkout system diagnostic

mode.

2. Self-containment

Self-containment is achieved by making

available all the necessary tools for completing the

tests in the checkout system itself. Periodic display

of the status of the test articles and tests in progress

is provided. Tools are used for data processing and

analysis with automated checking of results. These

mechanisms enable decision-making during tests

without the need of any additional equipment.

Organization of the checkout system in a

single rack with all associated power supplies,

interfaces and computers provide ease of use and

portability. Implementation of mechanisms for

fault-tolerance and the availability of tools for

diagnostics of the checkout interfaces add to self-

containment.

3. Automation

Different mechanisms are designed to

implement the feature of automation. Automating

the intermediate steps in test procedures is the

basic mechanism. The parameters for the steps are

captured in the software in such a way that

minimum intervention is needed from the test

operator. Calibration tests involving a number of

steps are automated using configuration files that

capture the parameters of intermediate steps.

Some tests need the test-jig to be

commanded for necessary orientation and rotation.

Commands to the controller of test-jig are

generated automatically from the checkout system

by building an interface and command protocol

between the two systems.

Automatic verification of initial conditions

necessary for tests, verification of correctness of

the operation of intermediate steps, real-time

display and checking of critical parameters during

tests, data processing and verification of results at

the end of tests etc are some of the mechanisms

used to enable automation. Automation creates an

identical condition for the system all along the

calibration process, especially taking into account

the thermal characteristics while taking the

measurements.

4. Design for Safety

Mechanisms for ensuring safety of the test

articles are paramount while designing automation.

Interlocks that control the method and

sequence of applying power to the test articles are

implemented in the hardware interface. In addition,

initial conditions and power-supply voltages are

checked by software before powering packages.

Continuous monitoring of the power-supply

voltages and the currents drawn by the packages is

done. In case of any anomaly, automatic actions

are undertaken to ensure safety. Critical parameters

related to the health of packages under test are also

acquired and subjected to continuous surveillance.

Operator is alerted about any error conditions by

audio signals and display. A watch-dog circuit is

designed which alerts with loud alarm if the

checkout software is not working as intended. Any

user-input provided during test is verified before

use.

Some of the automatic safe-actions

themselves are disabled during critical tests when a

number of initial conditions are necessary to be

satisfied. Provision for by-pass control of power

allows temporary work on the checkout system

without affecting the test articles. Clear indication

of any error by display and alarm is the method

used in such situations. There is also provision for

an emergency switch to cut off power to test

articles.

Precautions for ensuring safety of test-log

and data are also of importance. Automatic re-

routing of printer data to a file in case of any error

in the printer is an example. The operator is alerted,

and once the printer becomes ready, the stored data

is printed and then normal printing mode is

restored. No user action is required to activate this

re-routing.

5. Design for Security

Security is ensured by defining a set of users

for the checkout system and clearly demarcating

the pathname space accessible to each user. The

users are categorized with respect to missions. User

authentication by username and password,

allotment of privileges to users only as required

and use of binary data format for configuration

files are some of the other mechanisms designed

for security.

6. Fault-tolerance

Fail-safe is the condition of fault tolerance

required in checkout systems. Automatic safe-

actions are undertaken with continuous health

surveillance of the test articles throughout the time

of tests. In case of anomalies during tests, tests are

aborted and the setup brought back to safe

conditions.

IV. SELECTION OF IMPLEMENTATION

MECHANISMS

Some of the selections made during the

implementation of the design also contribute to the

realization of the features of reconfiguration and

automation.

1. Choice of Operating System

The requirements to the checkout system

fall into functional and non-functional

requirements and need many actions with varying

degrees of criticality and periodicity. Complex

tests needing simulation of inputs to the test

articles require simulation and acquisition of data

from multiple interfaces with millisecond

periodicities and hard real-time deadlines. It is

decided to implement the requirements by

designing the checkout system as a real-time

system using a hierarchy of co-operating processes

with different priorities and scheduling policies. To

facilitate such a design, it is decided to use a real-

time operating system (RTOS) and QNX is

selected. QNX has fast context-switch and interrupt

latency times and many mechanisms for inter-

process communication and synchronization. The

choice of operating system also enables the design

for reconfiguration and security using the features

of soft-links, user authentication and pathname

space management.

2. Software Architecture

The software is designed to have client-

server architecture. This extends the client-server

nature of the underlying operating system (QNX).

This architecture enhances the capacity for fault-

tolerance and re-configuration as the clients and

servers can be updated seamlessly as long as the

interfaces remain constant. Servers implementing

generic functionality are deployed with different

input conditions to simulate similar behavior on

different devices. The network-aware nature of

QNX makes it possible to deploy servers in any

computer in the network if needed, without

changing the software or the operating procedure.

The software is designed to have a

graphical user-interface using the standard Open

Look interface. This aids automation.

V. DEVELOPMENT APPROACH

The initial development path follows a

bottom-up approach. The hardware interfaces and

servers implementing device driver functions are

realized. The client modules are then developed,

adding features incrementally. The software is

realized with version numbers and new versions

are released to incorporate updates and changes

during the long period of use of the checkout

system. The checkout system is subjected to

different levels of a formal verification and

validation process to ensure correctness and

completeness. After deployment, updates on the

configuration setup are required to support changes

and new requirements with respect to missions.

VI. CONCLUSION

Need for concurrent support of missions

with requirements which are sometimes at odds

with one-another, long periods of usage and fool-

proof operations is the hallmark of checkout

systems. Implementation of features of automation,

self-containment and reconfiguration makes it

possible to realize these requirements effectively

and efficiently. Implementing features in the design

that aid in realizing the core functionality required

goes a long way in providing an efficient

maintenance phase. RESINS checkout system has

successfully been in operations for more than a

decade supporting various missions.

ACKNOWLEDMENT

Mr. P. S. Veeraraghavan, Director, IISU,

is gratefully acknowledged for encouragement and

support of the work detailed here. The authors

would also like to acknowledge Mr. S. Gopakumar,

Head, Computer Division, Vikram Sarabhai Space

Centre, Thiruvananthapuram, for his original

contributions in the design of RESINS Checkout

System.

BIO DATA OF AUTHORS

Jaya G. Nair received B.Tech degree

from University of Kerala, in 1988

and M.E. degree from Indian Institute

of Science, Bangalore, in 2001, both

in Computer Science and Engineering. Currently

working in ISRO Inertial Systems Unit. Her areas

of interest include Real-time systems, Operating

Systems and Software Engineering.

C. Radhakrishna Pillai received

B.Tech degree in Electronics and

Communication Engineering from

University of Kerala in 1988.

Currently pursuing M.Tech degree in

Microwave Communication Engineering from

University of Kerala. Presently working in ISRO

Inertial Systems Unit. His areas of interest include

Embedded Systems, Data Acquisition, Automation

and Digital communication systems.

S.Hemachandran received B.Sc

(Engg) degree in Electronics and

Communication Engineering from

University of Kerala, in 1983 and

M.Tech degree in Electrical Engineering from IIT,

Kanpur in 1989. Currently working as Dy.

Division Head, NSSD-COS, of ISRO Inertial

Systems Unit. His research areas are Embedded

systems, Real-Time systems, GPS and Signal

Processing.

Dr. P.P. Mohanlal received B.E

degree in Electronics and

Communication Engineering from

Madras University, in 1976, M.Tech

degree in Applied Electronics and

Instrumentation from University of Kerala in 1995

and PhD degree in Computer Science from

University of Kerala, in 2005. He is currently

heading Navigation Software and Simulation

Division in ISRO Inertial Systems Unit. He is a

member of the post-graduate board of studies of

University of Kerala. His research interests

include intelligent control methods for nonlinear

systems (Neural, fuzzy and neuro-fuzzy methods),

Optimal filtering & control, DSP & Digital filter

design using feedback neural network and

Integrated Navigation Systems. Senior member of

IEEE for 10 years. He has more than 12 research

Publications in International Journals and IEEE

Conferences. He is associate editor of a book on

Neuro–Fuzzy Control, published by Narosa

Publishing House, New Delhi, 1998.

