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Abstract  

 The design of space systems for long duration 

missions have to be superior in reliability and accuracy 

compared to expendable Launch vehicles. An 

Interplanetary mission is a typical example. In addition 

to the standard design techniques for reliability and 

accuracy, these navigation systems have to incorporate 

optimum strategies for sensor failure management, 

error correction and utilization of maximum number of 

sensors throughout the mission. Even in the face of 

imminent sensor failure, appropriate algorithms have 

to be employed to filter out the erroneous data so as to 

scavenge and utilize the sensor to the maximum extent 

possible. There are two main failure modes associated 

with an inertial sensor; total functional failure and 

performance deterioration. Most of the present 

algorithms apply a Failure Detection and Isolation 

(FDI) approach to isolate faulty sensors. In this paper, 

we propose an algorithm for filtering and reusing the 

data from a deteriorated sensor by applying a weighted 

parameter approach. Performance assessment of the 

algorithm for different missions is carried out using 

standard simulation methods and their impact on 

mission performance is also discussed.   
 

Keywords: Bias drift, weighted LSE, sensor residue, 

scale factor, sensor error model 

1. Introduction 

Navigation systems form a critical part of 

every space transportation system, be it spacecraft or 

launch vehicles. They employ inertial sensors like 

gyroscopes and accelerometers, for attaining position, 

velocity and attitude information. The angular rate and 

linear acceleration outputs from these sensors are 

integrated to provide required navigation information, 

due to which minor errors in sensor measurements will 

propagate into navigation states which in turn affect 

the mission accuracy. Inertial sensors are prone to 

change in the calibration coefficients in long run due 

to various reasons. Therefore, redundancy schemes, 

intelligent error compensation algorithms and failure 

detection and isolation schemes become extremely 

important in a navigation system especially when they 

are envisioned for extended duration missions. INS 

contribution in total mission error is estimated 

typically as 80% or more. So any accuracy 

improvement in INS has a direct impact on the total 

mission accuracy. An in-flight estimation of sensor 

coefficients is proposed in this paper, which estimate 

and correct the sensor error during the flight. A novel 

technique based on weighted LSE scheme is also 

proposed in this paper for fine selection of FDI passed 

sensors for navigation parameter estimation. 

2. Sensor Errors and Estimation 

Any sensor is prone to performance variations 

due to imperfection in manufacturing, limited 

operating range, modelling approximations, change in 

operating environment etc. The accompanying sensor 

errors can be either deterministic or random. The 

general strategy in error compensation is modelling 

and compensation of the deterministic errors using a 

sensor error model. Usually first order approximation 

is done, and for better accuracy missions, second order 

approximation is also attempted. The effect of random 

error in sensor measurement can be reduced by 

employing multiple measurements using a number of 

sensors. 

3. Classical Approach in Error Compensation and 

FDI 

The measurement from any sensor channel is 

the sum of expected output, deterministic errors and 

un-modeled sensor errors. 
 

M = HX + E + n    (1) 
 

M = Sensor measurement matrix 

H = Sensor geometry matrix 

X = Physical input in three orthogonal axis 

E = Deterministic measurement error matrix 

n = Un-modeled sensor errors 

Once the measurement is compensated for 

deterministic errors, the equation (1) reduces to 

Mcomp= HX + n          (2) 

The effect of un-modeled error (n) can be reduced by 

taking the LSE from all the sensor measurements. The 

classical failure detection scheme analyzes 

compensated data for consistency in measurement. 

The majority voting scheme is usually adopted and 

those sensors, which violate the majority rule is 

isolated, either temporarily or permanent depending on 

the severity of degradation. There are only two 
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possibilities for a sensor data; it is either usable or not 

usable.  All the usable sensor data are given equal 

priority in final navigation. 

4. Proposed Algorithm 

This paper attempts to introduce a new 

philosophy of partial use of a degraded sensor, 

depending on the extend of degradation. So all the 

sensors will be used throughout the mission with a 

varying utilization factor which range from 0% to 

100% depending on the extend of degradation. This 

paper also discusses a novel mechanism to estimate the 

deterministic error, due to sensor degradation during 

operation and possible correction of the same in flight 

instead of isolating the degraded sensors. This ensures 

the availability of maximum number of sensors 

throughout the mission. 

4.1 Weighted Least Square Estimation  

Existing algorithms use least square estimate 

to get an optimum estimate from available sensor 

measurements. However, it does not take into 

consideration the relative spread of the errors. 

Weighted LSE takes care of this drawback by 

assigning adequate weights to the different sensor 

measurements based on individual sensor error 

estimates. Figure 1 shows the algorithm for weighted 

LSE. 

 

 

 

 

  

 

 

 

 

 

 

 

 

Fig1. Weighted LSE flow diagram 

4.2 Coefficient estimation and update  

Sensor coefficients estimated on ground 

through calibration procedures are loaded onboard via 

“initialization files” as part of pre-launch schedule. 

Therefore, variations accumulated in the time window 

from calibration to launch is unaccounted for. The 

proposed algorithm circumvents this by estimating the 

coefficient during mission and updating them on flight. 

It can also be helpful in cases when the mission 

duration is long (Ex: Interplanetary mission), during 

which the coefficients changes throughout the whole 

mission duration is taken care.  

The measurement equation of INS: 
 

M = H.X + E + n    (3) 
 

After compensating for systematic errors 
 

Mcomp = H.X + n          (4) 
 

The measurement Mcomp can be resolved into vehicle 

body axis using LSE estimation. 
 

Xest = [(H
T
.H)

-1
.H

T
].Mcomp  (5) 

 

Effect of n is neglected, as it will be minimized by 

LSE. An estimate of each sensor measurement can be 

derived from X as follows.  
 

Mest = H.Xest           (6) 
 

Random noise in each measurement can be eliminated 

using an LMS filter whose inputs are the measurement 

and a random noise model nmodel.  
  

 Mfilt = LMS (M,nmodel)  (7) 
 

An estimate of error “E” due to coefficient variation 

can be found out as  
 

eEst = Mest-Mfilt   (8) 
 

We fix the measurement in a second order equation as: 
 

 Mcomp= c2.m
2
+c1.m+c0  (9) 

 

Where c0, c1, c2 are the sensor coefficients viz bias, 

scale factor, second order factor and m is the estimated 

sensor measurement Mest. 
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If the estimated values of sensor coefficients are within 

a predefined band, then no correction is made 

assuming that the difference will be due to 

computational inaccuracy. Similarly, if the values are 

beyond a limit, no corrections are made assuming the 

failure is so severe that it may be beyond correction; 

sensor will be isolated and system is configured with 

remaining sensors. In all other cases, the coefficients 

will be updated using the estimated ones. The flow 

diagram of this algorithm is given in Figure 3. Fig 2 

gives the overall flow diagram of the proposed 

algorithm.   
 

 

Sensor Error 

Estimate 

 

LMS filter 
Sensor Measurement 

Noise Model 

Estimated Measurement 

   Sensor Weight Estimate 
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Fig 2. Overall algorithm flowchart

 

 

 

 

 

 

 

Fig 3. Flow diagram for calibration coefficient 

updating algorithm 

5. Simulation results 

For simulation studies INS configuration of 

six accelerometers and three gyroscopes are chosen. 

Accelerometers are arranged in skewed triad hexad 

configuration of half cone angle 54.74° and 

gyroscopes in orthogonal skewed geometry. 

Simulation studies were carried out by inducing 

different types of errors in one of the acceleration 

channels. 

Simulations were carried out in typical mission 

trajectory and sinusoidal acceleration input profiles 

and error in bias and scale factor is injected. Figure 4 

shows the coefficient updating done by the algorithm 

for an introduction of 3millig error in bias from 100 

second onwards in a sinusoidal input of frequency 

3Hz. Simulation with typical launch vehicle trajectory 

is also shown with similar results. The net gain in 

orbital accuracy in the mission due to in flight 

calibration is tabulated. 
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Fig 4. Bias estimation in open loop mode 

5.1 Simulation in GTO launch trajectory 

5.1.1 Bias error 

Bias error of 10 millig is introduced in one of 

the sensor from time T0 + 100 s onwards for a flight of 

1200s duration. Simulations were done in GTO 

trajectory.  The simulation shows that the bias error 

Coefficient 

estimator 

 

LMS filter 
Sensor Measurement 

Noise Model 

Estimated Measurement 

Estimated Sensor Coefficients and update coefficients 
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was estimated well and was corrected during flight. 

The estimated bias error was shown in figure 5. 

Navigation parameters for the proposed algorithm and 

present scheme are compared and proposed scheme is 

found to be better.  Details are given in table 1. 

-1

0

1

2

3

4

5

6

7

8

9

10

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400

Time (sec)

m
ill

i 
g

 

Fig 5. The bias error (Coefficient c0) estimated by 

proposed algorithm for GTO simulator. 

 

 Table 1: Performance of the proposed algorithm in 

 the orbital parameters for GTO simulator 

 
Apogee 

(Km) 

Perigee 

(Km) 

Inclination 

(Deg) 

Without in-flight calibration 

Trajectory 34153.75 165.12 19.54 

INS 36025.92 170.66 19.37 

INS-Traj 1872.17 5.54 -0.17 

With in-flight calibration 

Trajectory 35884.11 172.85 19.39 

INS 36013.19 170.61 19.37 

INS-Traj 129.08 -2.24 -0.02 

 

5.1.2 Scale factor error  

Scale factor error was introduced in one of 

the sensor outputs and simulations were taken. Scale 

factor error was estimated and updated. Significant 

improvement was observed in Navigation parameter 

estimation for the proposed algorithm over the existing 

scheme. Figure 6 shows the scale factor error 

estimated by the proposed algorithm. Orbital error 

performance is tabulated in table 2. 
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Fig 6. The scale error (Coefficient c1) estimated by 

proposed algorithm for GTO simulator 

 

Table2 Performance of the proposed algorithm in 

the orbital parameters for GTO simulator 

 
Apogee 

(Km) 

Perigee 

(Km) 

Inclination 

(Deg) 

Without in-flight calibration 

Trajectory 35261.80 167.29 19.38 

INS 36010.83 170.43 19.37 

INS-Traj 749.03 3.14 -0.01 

With in-flight calibration 

Trajectory 35935.21 170.35 19.37 

INS 35997.22 170.53 19.37 

INS-Traj 62.01 0.18 0.0 

5.2 Closed Loop Simulation: Polar traj  

Simulation studies are carried out in Polar 

trajectory simulator with bias error of 2 millig and 

scale factor error of 1 millig simultaneously from 100 

second onwards. The orbital error performance is 

summarized in table 3. 

Table 3 Performance of the proposed algorithm in 

the orbital parameters for polar traj simulator 

 
Apogee 

(Km) 

Perigee 

(Km) 

Inclination 

(Deg) 

Without in-flight calibration 

Trajectory 817.52 815.24 98.66 

INS 828.24 823.98 98.71 

INS-Traj -10.72 8.74 0.05 

With in-flight calibration 

Trajectory 824.79 820.05 98.69 

INS 822.50 821.28 98.72 

INS-Traj -2.29 1.23 0.03 
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The INS accuracy improvement scheme using 

weighted LSE is simulated over the updated 

coefficients. The weight-age rule for simulation is 

given in Table 4.  

Table 4 Weight rule used for studying the proposed 

algorithm in GTO simulator 

SI 

No 

2 second 

accumulated 

estimated error (Eest) 

Weight rule 

1 Ees <200 µg No correction 

2 200 µg<Eest<300µg 
Give 75% weightage 

compared with others 

3 300 µg<Eest<500µg 
Give 50% weightage 

compared with others 

4 500 µg<Eest<700µg 
Give 25% weightage 

compared with others 

5 
700 µg<Ees<1400 

µg 

Give 5% weightage 

compared with others 

6 1400 µg<Ees Isolate the sensor 

  

Simulations are done in GTO simulator with a bias 

shift of 250µg on sensor 1 and 400µg on sensor 2. The 

simulation results are tabulated in table 5. It clearly 

shows that the weighted LSE scheme improves the 

performance of INS orbit.  

Table 5 Performance of the weighted LSE 

algorithm in the orbital parameters for GTO 

simulator 

 
Apogee 

(Km) 

Perigee 

(Km) 

Inclination 

(Deg) 

Without in-flight calibration 

Trajectory 35797.90 170.67 19.37 

INS 35948.25 171.18 19.37 

INS-Traj 150.35 0.51 0.0 

With in-flight calibration 

Trajectory 35983.69 170.76 19.37 

INS 35994.54 170.60 19.37 

INS-Traj 10.85 -0.16 0.0 

6. Conclusion 

A novel algorithm for sensor coefficient 

estimation and correction was developed with INS 

accuracy improvement scheme. The algorithm was 

developed and simulated with different types of error 

like scale factor error, bias error and was found to be 

giving a better estimate compared to present scheme. 

Mission simulations carried out gave better orbital 

parameter estimates using his algorithm. Simulation 

studies are done for short duration missions and 

performance of the algorithm is satisfactory in both 

Polar and GTO trajectory simulator. It is evident that 

the INS is more prone to shift of calibration 

coefficients in long duration missions and hence this 

algorithm is highly desirable in long duration missions. 
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