
 RESINS Checkout System Software:

Mapping Requirements to Design

Features

Jaya G. Nair, C. Radhakrishna Pillai, S. Hemachandran, Dr. P. P. Mohan Lal

ISRO Inertial Systems Unit, Indian Space Research Organisation,

Vattiyoorkavu, Thiruvananthapuram

g_jaya@vssc.gov.in

Abstract:

 Computerized Checkout Systems are used for

the calibration and performance evaluation of

navigation systems. The checkout software needs to

realize multiple tasks with different requirements of

periodicity and deadlines, to support fool-proof

operations with need for minimum intervention by the

operators and be available for different missions

concurrently without change in the operating

procedures. Obtaining a mapping from requirements to

specific features in the design enables the effective

development and maintenance of the software. This

paper discusses such a mapping and describes the

mechanisms used for realizing the different design

guidelines.

Key words: Checkout Systems, Automation, Safety,

Fault-tolerance.

I. INTRODUCTION

Navigation Systems used in launch vehicles

need to be calibrated and subjected to many tests in

different environmental conditions to qualify them

for flight. PC-based checkout systems are used for

this purpose. These checkout systems consist of the

hardware interfaces necessary to connect the test

articles and a checkout program containing the

software modules to conduct the various tests. The

functional requirements to the checkout software

are derived from the test and evaluation plan of the

navigation systems. In addition to these, the

checkout software is characterized by special

challenges related to the environment of use, the

complexity of multiple inter-related requirements

and stringent demands of quality. These demands

can be achieved efficiently and effectively only by

addressing them during the design of the software

itself. The requirements must be mapped to

specific features in the design of the checkout

software. This paper discusses how this mapping is

achieved in the design of the software for the

Checkout System (COS) used for testing the

Redundant Strap down Inertial Navigation System

(RESINS) for GSLV.

The different types of requirements to the

checkout software are briefly enumerated in

section II. This is followed by an analysis in

section III, to arrive at the design features needed

to realize the requirements. The details of

implementation of the design features are discussed

in section IV followed by implementation details

and conclusions in section V and VI respectively.

II. REQUIREMENTS TO CHECKOUT

SOFTWARE

 The requirements fall under separate

categories as follows:

1. Functional Requirements

 The test article to which the checkout

system has to interact is illustrated by figure [1]. It

shows Mark-4 ISU connected to Navigation

Interface Modules (NIM). The two NIM and two

Navigation and Guidance Processor (NGCP)

packages which form the onboard processor units,

are connected to MIL-1553 buses with redundant

connections. The checkout system is also

connected to the two buses. Interfaces necessary

for powering the packages, for monitoring, data

acquisition and providing simulated inputs to the

packages are also needed, though not shown in fig

[1].

The checkout software must have provisions

for powering the packages, implement the monitor-

mode (MM) and flight mode (FM) interfaces to the

Page 122

 Fig[1]: Test Articles and Checkout System

processors, acquire and store telemetry data from

the different processors in the two buses, and

implement the test procedures corresponding to

calibration and performance evaluation tests of

RESINS. The tests include simulation tests where

the checkout system has to simulate the inputs to

NIM, tests where checkout system has to simulate

the behavior of NGCP on the two buses and power-

supply variation tests. Provisions for on-line and

off-line data processing, initialization data update,

generation of test results and data archival are also

functional requirements of the checkout software.

Fig[2] shows the context under which the

checkout software operates.

Fig [2]: Context diagram for Checkout Software

2. Special Requirements

Certain challenges to the RESINS Checkout

system that translate to special requirements to the

checkout software are enumerated here.

 The navigation systems for different

missions have broadly the same test requirements

but there are differences in many specifics. These

include changes in the format of data, software

used in navigation processors, test conditions,

methodology used for computation of test results

etc. The RESINS checkout software must be

available to support the different missions

concurrently.

Different units of checkout systems need to

be deployed to cater to tests at different test

stations including environmental test-beds.

Differences in the configuration of the checkout

hardware including allocation of I/O channels

between the different units need to be supported

seamlessly.

It must be possible to operate the checkout

software for long hours without failure as some of

the calibration tests involve a number of steps

which must be completed in the same day.

The checkout systems are operated by

people who are not necessarily RESINS experts.

Hence the system should be equipped to support

fool-proof operations with minimum intervention

required from the test personnel.

To reduce the time of test, it must be

possible to efficiently use the checkout software

and provide all required facilities for decision

making in the checkout system itself. The software

must provide necessary alert messages to the

operators as and when required.

 The software should be able to accept

different configurations of the test articles,

simulating the behavior of the missing packages

accordingly.

The checkout systems are typically used for

many years which translate to having a long

maintenance phase after the initial design and

deployment. Any failure and reallocation of

hardware interfaces during the maintenance phase

must be absorbed and it must be possible to support

updates to the software and setup as and when

needed.

III. DESIGN FEATURES NEEDED TO MAP

THE REQUIREMENTS

The broad requirements enumerated in

section II are analyzed in detail to arrive at a set of

Page 123

design guidelines to the checkout software. Some

guidelines are laid down in order to realize the

functional requirements of the software in the most

efficient way. The other guidelines are aimed at

achieving the special requirements.

The checkout software should be correct

and complete with respect to meeting the complex

functional requirements under all conditions of

load. The maximum load on the system with

respect to timeliness and amount of data to be

handled occurs at the time of tests involving

simulation of inputs to NIMs, updated every 20

msec. The strict timing requirements must be met

at all times.

To concurrently support RESINS packages

of different missions, the checkout software must

be able to reconfigure itself to the differences in the

test requirements between missions. The feature of

reconfiguration must also solve the need to work

in different checkout units with potential

differences in hardware interfaces. The software

must also reconfigure itself in the face of

reallocation of hardware interfaces during the long

maintenance phase.

To cater to the years of usage of the

checkout system, the software must have the

feature of easy maintainability. The software must

be scalable and it must be easy to understand and

make changes.

The feature of self-containment is needed

to ensure efficiency of usage and also to act as the

decision-making system during the performance

evaluation of RESINS. The software must provide

OK/NOT OK messages about the status of

checkout system itself and SUCCESS/FAILURE

messages about the status of performance tests

conducted on the test articles.

The feature of automation is needed to

support fool-proof operations in the checkout. The

test procedures must be automated to the extent

that minimum intervention is required from the

operator. Automation also means that software

should have features for security, safety and fault

tolerance without the need for conscious action

from the user. The software must also have the

feature of user-friendliness. The system should be

easy to operate and should provide a consistent

interface for the user, across the many hues of its

use.

The need to operate continuously for long

hours without failure necessitates that the software

must have features of robustness, availability

and reliability.

IV. DESIGN OF MECHANISMS TO REALISE

THE FEATURES

The mechanisms employed to realize the

different features are explained here.

1. Correctness and Completeness

The checkout software needs to implement

many actions with varying degrees of criticality

and periodicity. Complex tests need simulation of

inputs to the test articles and acquisition of data

from multiple interfaces with millisecond

periodicities. To achieve correctness in the face of

hard real-time deadlines, the checkout software is

designed as a real-time system using a hierarchy of

co-operating processes with different priorities and

scheduling policies.

Choice of operating system and the

architecture of the software are critical in achieving

correctness.

1.1. Choice of Operating System

 To facilitate the design as a real-time system, it

is decided to use a real-time operating system

(RTOS) and QNX is selected. QNX has fast

context-switch and interrupt latency times and

many mechanisms for inter-process

communication and synchronization.

1.2. Software Architecture

The software is designed to have client-server

architecture. The servers are independent, each

implementing a particular functionality and expose

themselves only through the interface. The main

checkout program acts a client to the many servers.

The server programs include device drivers for I/O

cards, programs for handling processing and

storage of high-speed data, implementing the

protocol for communicating with the test articles,

for printing functions etc. Servers run in the

background and the users interact with the clients.

Fig[3] shows the list of servers and clients that

typically operate during a session of checkout use.

Page 124

Fig [3]: Servers and Clients

2. Reconfiguration

All factors which may undergo change are

captured as parameters to the checkout software.

The values of these parameters are specified using

a set of configuration files. The files capture all the

different scenarios of usage with respect to

missions, checkout units and test beds. Users for

the different projects are distinguished by defining

them as different users in the multi-user system.

The test-configuration for a particular invocation of

the software gets specified by a combination of the

identity of the user, environmental settings,

command-line arguments and selections made by

the user from a list of options shown. Once the test

configuration is specified, the software uses the set

of applicable configuration files to define the

values of all parameters and is able to reconfigure

itself. It is possible to completely change the look

and feel of the checkout software in this manner.

Reconfiguration applies to fields shown in the

Graphical User Interface (GUI) displayed, the

menu of options shown, channels used in data

acquisition, data processing methodology used,

reference values used to check test results etc.

The feature of reconfiguration makes the

software adaptable and extensible.

3. Maintainability

The capability of reconfiguration across

changes is the main tool that helps to achieve

maintainability.

Device drivers are designed to implement

common APIs independent of the features of any

particular hardware. This makes it possible to

support failures and updates to hardware interfaces

during the long maintenance phase. It is possible

for the system to be implemented in cPCI systems

or industrial PCs, and is scalable across hardware

enhancements. Independence of servers also adds

to scalability of the system.

The main client program controls the sequence

of operations. The single point of control improves

maintainability and understandability of the whole

system. The servers are typically implemented in

object-oriented programming languages, paving the

way for code reuse.

4. Self-containment

All the necessary tools for completing the tests

are made available in the checkout system itself.

Periodic display of the status of the test articles and

tests in progress is provided. Tools are used for

data processing and analysis with automated

checking of results. These mechanisms enable

decision-making during tests without the need of

any additional equipment.

5. Automation

Different mechanisms are designed to

implement automation. Automating the steps of

test procedures is the basic mechanism. The

parameters for the tests are captured in the software

so that minimum intervention is needed from the

test operator. Tests involving a number of steps

are automated using configuration files that capture

the parameters of intermediate steps.

Some tests need the test-jig to be commanded

for necessary orientation and rotation. Commands

to test-jig controller are generated automatically

from the checkout system by building an interface

and command protocol between the two systems.

Automatic verification of initial conditions

necessary for tests, verification of correctness of

the operation of intermediate steps, real-time

display and checking of critical parameters during

tests, data processing and verification of results at

the end of tests are some of the other mechanisms

used to enable automation. Availability of

unambiguous and time-tagged log data which helps

in problem analysis is also necessary.

Automation creates an identical condition for

the system all along the testing process. This is

highly essential to ensure correctness of test results

since navigation systems are highly sensitive to

changes in the environment of tests.

Page 125

6. Robustness

The program is defined to have different

modes of operation. The test-mode is the one used

by the user. Diagnostic-mode, which supports fault

diagnosis in the checkout system aids in doing

checks on the fly. The checkout program is also

designed to have an option hot-exit, which helps in

exiting from the program preserving the context,

and hot-start, which inherits the previous context.

These features help in maintaining continuous

operations even in the face of unforeseen

circumstances or failures.

7. Safety

The checkout software controls the sequence

of applying power to the test articles and checks

power-supply voltages before powering packages.

Power-supply voltages, the currents drawn by the

packages and critical parameters related to the

health of packages are continuous monitored. In

case of any anomaly, automatic actions are taken to

ensure safety and operator is alerted by audio

signals and display. A watch-dog circuit is

designed which alerts with loud alarm if the

checkout software is not working as intended. Any

user-input provided during test is verified before

use.

Some of the automatic safe-actions are

disabled during critical tests where a number of

initial conditions are necessary to be satisfied.

Clear indication of any error by display and alarm

is the method used in such situations. There is also

provision for an emergency switch-off to cut off

power to test articles.

Precautions for ensuring safety of test-log and

data are also of importance. Automatic re-routing

of printer data to a file in case of any error in the

printer is an example. The operator is alerted, and

once the printer becomes ready, the stored data is

printed and then normal printing mode is restored.

No user action is required to activate this re-

routing.

8. Security

Security is ensured by defining a set of users,

categorized by missions, for the checkout system

and clearly demarcating the pathname space

accessible to each user. The options for hot-start

and hot-exit from the program are controlled by

passwords. User authentication by username and

password, allotment of privileges to users only as

required and use of binary data format for

configuration files are some of the other

mechanisms designed for security.

9. Fault-tolerance

Fail-safe is the condition of fault tolerance

required in checkout systems. Automatic safe-

actions are undertaken with continuous health

surveillance of the test articles throughout the time

of tests. In case of anomalies, tests are aborted and

the setup brought back to safe conditions.

The client-server architecture of the software

enhances the capacity for fault-tolerance and re-

configuration as the clients and servers can be

updated seamlessly as long as the interfaces remain

constant. The network-aware nature of QNX makes

it possible to deploy servers in any computer in the

network if needed, without changing the software

or the operating procedure.

10. Usability

The software has a Graphical User Interface

which is menu-driven and intuitive to use. The

operating procedures are kept the same across the

different missions and test-beds. Automation of test

procedures enhances usability. A display window

shows the status of tests, the interfaces and health

of the packages continuously. Any abnormal

condition is highlighted in the display, messages

are printed and an audible alarm is raised. The user

is provided with the flexibility to group and

configure the parameters to be used to calculate

results as the test condition demands.

11. Responsiveness

Use of intelligent peripheral interfaces helps to

shift time-critical tasks away from the main

system. Use of asynchronous inter-process

communication mechanisms and real-time features

of QNX including fast context-switches and

preemptive priority scheduling help in realizing the

response times required.

V. IMPLEMENTATION

The checkout software is realized with

version numbers and new versions are released to

incorporate updates and changes during the long

Page 126

period of use of the checkout system. The software

is subjected to different levels of a formal

verification and validation process to ensure

correctness and completeness. RESINS checkout

software has successfully been in operations for

more than a decade supporting various missions.

VI. CONCLUSIONS

Need for concurrent support of missions

with requirements which are sometimes at odds

with one-another, long periods of usage and fool-

proof operations is the hallmark of checkout

software. The mapping of requirements to features

in the design enables the development of software

that not only implements the functional

requirements, but is also easy to maintain and use.

The different features and methods of

implementation employed in RESINS checkout

software have been highlighted.

Possible future extensions to the software

include building better awareness in terms of the

test conditions, automatic generation of a data base

of meta-data information, use of semantics in the

configuration files and adaptation with respect to

changes in test procedures. Building provisions for

voice commands, wireless networking and a web-

interface to monitor various test beds at a single

portal are some of the other extensions envisaged

for the RESINS Checkout software.

ACKNOWLEDGEMENTS

Mr. P. S. Veeraraghavan, Director, IISU,

is gratefully acknowledged for encouragement and

support of the work detailed here. The authors

would also like to acknowledge Mr. B.C. Vidwani,

DD, LVIS for encouraging us in this work.

Page 127

	1
	8
	MS1665

	9
	MS 1738

	1.pdf

