
 INS Checkout System: Realization as a

Real-Time System

Jaya G. Nair, C. Radhakrishna Pillai, S. Hemachandran, Dr. P. P. Mohan Lal

ISRO Inertial Systems Unit, Indian Space Research Organisation,

Vattiyoorkavu, Thiruvananthapuram

g_jaya@vssc.gov.in

Abstract:

Requirements of checkout systems have many

areas where timeliness is of utmost importance.

Automation, safety and security requirements also create

the need for features where deadlines have to be met.

The design of checkout system has to be undertaken as a

real-time system to effectively meet these needs. The

features in the design of RESINS Checkout stsrem as a

real-time system are detailed here.

Key words: Checkout Systems, Automation, Safety,

Fault-tolerance.

I. INTRODUCTION

Automated Checkout Systems are used for

the test and evaluation of navigation systems used

in launch vehicles. AMC-based RESINS Checkout

System caters to the testing requirements of the

Redundant Strap down Inertial Navigation System

(RESINS) which is the navigation system used for

PSLV and GSLV launch vehicles. The navigation

system uses the Advanced Mission Computer

(AMC) for doing the navigation computations. The

checkout system provides all necessary interfaces

to connect RESINS and AMC and implements the

different test procedures with minimum need for

user intervention. The tests include calibration and

performance evaluation tests in different

environmental conditions to qualify the systems for

flight. The various functions of the checkout

system differ in terms of the requirements of

periodicity, criticality and deadlines. To satisfy the

multiple requirements, the checkout system needs

to be implemented as a real –time system. This

paper discusses the design of features and the

implementation methodology that leads to the

realization of such a real-time system.

The different types of requirements to the

checkout software are briefly enumerated in

section II. This is followed by an analysis of the

requirements with the point of view of a real-time

system in section III. Design decisions are

enumerated in section IV followed by design of

hardware and software in sections V and VI

respectively. Section VII covers the evaluation of

the checkout system, followed by implementation

details and conclusions in sections VIII and IX

respectively.

II. REQUIREMENTS TO CHECKOUT SYSTEM

Fig.[1] shows the test articles that constitute

AMC-RESINS and the checkout system. Mark-4

ISU is connected to Navigation Interface Modules

(NIM). The two NIM and two Navigation and

Guidance Processor (NGCP) packages, which form

the onboard processor units, are connected to MIL-

1553 buses with redundant connections. The

checkout system is also connected to the two buses.

Interfaces necessary for powering the packages, for

monitoring, data acquisition and providing

simulated inputs to the packages are also needed,

though not shown in fig [1].

The requirements to the checkout system are

derived from the test and evaluation plan of AMC-

Fig[1]: Test Articles and Checkout System

Page 111

RESINS. These include powering packages, data

acquisition, data storage and implementing

procedures for calibration and performance

evaluation tests. The tests include simulation tests

where the checkout system has to simulate the

inputs to NIM and tests where checkout system has

to simulate the behavior of NGCP on the two buses

for conducting tests without NGCP packages.

The checkout system is characterized by

special challenges related to the environment of

use, the complexity of multiple inter-related

requirements and stringent demands of quality.

These translate to additional implied requirements,

which include the need for automation,

reconfiguration and implementation of features for

safely, security, fault tolerance and robustness.

On analysis, it turns out that the requirements

can be categorized as functional, temporal and

reliability requirements.

1. Functional Requirements

These include the following:

• Powering packages with control on sequence

and checks to ensure safety.

• Automating test procedures to support fool-

proof operations with minimum intervention

from users.

• Tools for data processing and to generate

results leading to decision making about

correctness of tests.

• Display of status, logging of data and printouts

of reports of tests.

• Archival of data.

2. Temporal Requirements

Requirements that have deadlines with respect

to time are classified here and include the

following:

• Mil-1553 bus protocol implementation must

maintain the timing requirements of the

protocol in terms of millisec. Simulation tests

where NGCP messages must be simulate on

the two buses must satisfy the inter-message

timings as specified in the NGCP message

format.

• Data acquisition and storage in flight mode

require the checkout system to collect data

from multiple RTs and broadcast messages

from NGCP every minor cycle (20 msec).

Along with storage to files, real-time frame

validation checks must be conducted on the

data and real-time display of critical

parameters done.

• Simulation tests needs the checkout system to

simulate 11 digital and analog inputs to NIMs

every 20 msec, with updates being done in

synchronization with minor-cycle of NIM.

• Continuous surveillance of health of the

checkout system must be done by acquiring

ADC data from upto 50 channels with

automatic safety actions, once every second,

and automatic checks on data acquired from

NIM, every 2 sec.

• Periodic status display at the rate of once every

sec and providing interactive response to user

input also require timely performance in the

checkout system.

3. Reliability Requirements

These include the following:

• Need to ensure safety of the onboard

packages, security of stored files with

respect to different missions and need for

user validation.

• Fault tolerance where a fail-safe condition

must be satisfied. User must be alerted in

case of any error and diagnostic tools

must be available to aid failure analysis.

III. REQUIREMENTS ANALYSIS

Analysis of the requirements point out that

the checkout system has real, hard and soft real-

time deadlines. Mil-1553 bus protocol has hard

real-time deadlines, while periodic status display

shows a soft real-time deadline.

To satisfy these deadlines, the checkout

system must implement the following:

• Robust, fast hardware for specific function

• Interrupt based task management

• Multiple processes with preemptive priority

based scheduling

• Inter-process communication

• Synchronization of processes

• Mutual exclusion of resources like files, data

buffers and printer

• Graphical User Interface

Page 112

IV. DESIGN DECISIONS

The following design decisions are taken

before the detailed design is carried out.

• Use of industry standard cPCI- based hardware

including robust PC, I/O cards and device

drivers.

• Use of a real-time operating system and QNX

is selected, with application software in C and

C++.

• The requirements are aimed to be realized by a

mix of hardware and software.

V. DESIGN OF CHECKOUT HARDWARE

A single cPCI system is chosen with PC and

9 I/O cards. I/O cards with built-in intelligence are

used. Provision for spare channels is made in the

I/Os so that failures can be supported and the

checkout system reconfigured. cPCI is chosen

since it ia state-of-the art, rugged, offers more slots

and a variety of interface boards with high I/O

capacity are available.

A modular Signal Interface Adaptor (SIA) is

designed which implements the interfaces to the

onboard packages. The functions include

• Powering packages with hardware interlocks

and safety features

• Power supply and package-end voltage

monitoring

• Current monitoring with hall sensors

• Bypass control for power and manual

emergency OFF switch

• Watch dog and surveillance audio alarm

• Control signal interfaces

• LED display on front panel for ON/OFF status

and error indication

• Signal terminations

Fig [2] shows the hardware configuration. It

shows the SIA, cPCI system with PC and I/O cards

and the many interfaces.

1. Hardware Design- Case study

To illustrate the hardware design to realize

real-time requirements, design of the Mil-1553

protocol implementation is described as a case

study.

Fig[2]: Hardware Configuration

The capabilities needed on the Mil-1553 bus

include the protocol implementation, acquisition of

telemetry data with no misses, simulation of NGCP

messages on the bus with synchronization of the

simulation in the prime and redundant buses.

The Mil-1553 interface selected is an

intelligent board with the following capabilities:

• Two channels with BC, RT and MT modes of

operation.

• In BC mode, the capability to generate a

programmed sequence of messages on the bus,

acquisition of RT data and multiple frame

simulation capability.

• In MT mode, capability of data transfer at

block-interrupt or message interrupts and

selective bus monitoring with RT or sub-

address as the condition.

The solution for the Mil-1553 capability has

the following features:

• Tight protocol requirements are shifted to the

intelligent board.

• Capability to store upto 1024 messages on

board with double buffering scheme ensures

no data is lost.

• Block interrupt scheme of the driver software

is used to implement simulation requirements.

• Synchronized behavior between prime and

redundant channels is achieved.

VI. DESIGN OF CHECKOUT SOFTWARE

Page 113

The checkout software is designed on top of

QNX real-time operating system. QNX is selected

due to the availability of features like multiple

prioritized interrupts, multiple priority-levels for

processes, preemptive priority based scheduling,

low interrupt latency, fast context switching times,

different mechanisms for inter-process

communication, availability of synchronization

primitives, rugged file-system etc. The real-time

features of QNX enable the development of the

checkout software to meet the real-time deadlines.

1. QNX Architecture

QNX is a micro-kernel architecture built with

a small kernel which comprises of IPC, scheduler,

H/W interrupts and a small part of the network-

process. Four other scalable processes viz. process

manager, device manger, file system manager and

network manager make it a full-fledged OS. The

native messaging scheme is the fundamental inter-

process communication which is synchronous in

nature. Hence sender and receiver must be in phase

with execution otherwise one of the processes has

to wait. This concept posed a challenge when

partitioning the processes during the design of

checkout software. The concept of sender get ting

blocked if its corresponding receiver is not waiting

or the receiver getting blocked when nobody is

requesting for data are helpful in portioning the

processes. The state diagram of QNX is as given

below in Fig[3].

Fig[3]: QNX state diagram

2. Software Architecture

The software is designed to have client-server

architecture. The servers are independent, each

implementing a particular functionality and expose

themselves only through the interface. The main

checkout program acts a client to the many servers.

The server programs include device drivers for I/O

cards, programs for handling processing and

storage of high-speed data, implementing the

protocol for communicating with the test articles,

for printing functions etc. Servers run in the

background and the users interact with the clients.

Fig[4] shows the list of servers and clients that

typically operate during a session of checkout use.

Fig [4]: Servers and Clients

The software is designed to have a graphical

user-interface with multiple pull-down menus and

uses object-oriented programming methodologies

to enable code reuse.

3. Design decision to enable RT performance

Some of the design features that enable design

as a real-time system are described here.

• Servers are defined for independent activities.

These include the servers for Mil-1553 bus

interface, real-time display, printer service etc.

The priorities are apportioned to the servers in

view of the criticality. Preemptive-priority

based scheduling is used with equal priority

servers run with round-robin scheduling.

Hence it is ensured that processes with high

criticality do not miss deadlines.

• Partitioning is done to ensure concurrency.

For example, each of the Mil-1553 buses is

handled by its own hardware device driver.

Use of a common data server is done with

shared memory. Real-time display is enabled

using asynchronous messages, which means

that the storage server need not wait for the

readiness of the display servers. Fig[5]

illustrates the interfaces.

Page 114

Fig [5]: Interfaces of Mil-1553 servers

• Simulation server receives asynchronous

messages from the hardware device driver for

Mil-1553 bus to generate the simulation data

in synchronization with the onboard systems.

No expensive polling is done here.

• Use of concurrent threads of execution is made

with servers typically waiting in a receive-

blocked state. A message sent from client

initiates a computation, where the server

replies with a reply immediately, freeing the

client to continue its execution concurrently

while the server services the request. Results

are transmitted with another message transfer.

This increases concurrency in the system.

• Priority inversion, which is a classic problem

in any real-time system is avoided by running

the servers at client’s priority. The same server

effectively runs at different priorities, flexibly

handling the requirements.

• Use of global memory is made for fast data

access between processes.

4. Design features in the software

The checkout software implements

configurable definition of the test environment and

any changes in the environment get reconfigured in

the software. Use of multiple invocations of the

same software to support similar behaviors in

different system is another design feature. An

example is the device drivers used for the two Mil-

1553 buses. The checkout system uses unified data

processing tools across checkout units and makes

use of reusable components in the software.

VII. EVALUATION OF CHECKOUT SYSTEM

Evaluation of the checkout system to ensure

correctness and completeness of the design is of

paramount importance.

Timing measurements are conducted on

critical areas of the code, to ensure timeliness.

Analysis is done by instrumenting the code with

activation of digital outputs and examining with

logic analyzers. QNX provides a tool to monitor

the system activity which helps in monitoring the

load on the system.

1. Verification of timing

 The following mechanisms are used to verify the

timeliness.

• Use of the timestamp register of Pentium

processor is made to verify timing in the

checkout system.

• A critical test like simulated input profile test

where inputs to NIM are simulated by the

checkout system needs extensive study on the

timing achieved. It is verified that system is

able to simulate the data well before the

expected time. Generation of a proxy message

from Mil-1553 bus server to the simulation

server, to synchronize the simulation is a

critical message. The delay in this message

was found to be less than 1 msec.

• Periodic surveillance tasks which must run at

the rates of 1 sec and 2 sec were ensured of

correctness by examining the logged data

which showed updates at the expected

periodicity.

• Storage of telemetry data corresponding to 6

channels to files is another critical area. The

timing for this activity was measured and

found to satisfy requirements. The QNX file-

system server returns control to the calling

client after moving the data to its area. Hence

the client does not wait for the completion of

the data storage activity.

VIII. IMPLEMENTATION OF CHECKOUT

SYSTEM

The checkout software is version controlled.

The checkout system is validated by a phase of

designer-level validation where standalone checks

are conducted, followed by tests with simulated a

Page 115

data and with QM packages. The checkout system

also goes through a formal process of qualification

including SDRC and Test and evaluation.

IX. CONCLUSIONS

AMC-RESINS Checkout system has many

timeliness requirements and hence has to be

designed as a real-time system. The features that

help in realizing such a design have been discussed

here. The architecture of design which is extensible

and configurable makes accommodation of

changes and updates easy. The use of QNX and

client-server architecture in the software has acted

as enablers in the design of a checkout system that

is correct as well as easily maintainable.

ACKNOWLEDGEMENTS

Mr. P. S. Veeraraghavan, Director, IISU,

is gratefully acknowledged for encouragement and

support of the work detailed here. The authors

would like to acknowledge Mr. B. C. Vidwani,

DD, LVIS for encouraging us in this work. The

authors would also like to acknowledge Mr. S.

Gopakumar, Head, Computer Division, Vikram

Sarabhai Space Centre, Thiruvananthapuram, for

his original contributions in the design of RESINS

Checkout System.

Page 116

	1
	8
	MS1665

	9
	MS 1738

	1.pdf

