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ABSTRACT

Launch vehicle autopilot control performance can be appreciably improved
using nonlinear adaptive-control methodology since it can cater to the nonlinear,
" timevarying and uncertain nature of the plant involved. Moreover, the fault
tolerant nature of the neural computation makes it ideal for launch vehicle
adaptive control if stability based training methods are developed. In this
paper, the feasibility of using two adaptive neural controllers for a launch
vehicle autopilot to achieve optimum performance under large plant
perturbations are studied and a suitable neural controller configuration is
evolved for unstable, nonminimum phase plants. Optimality of performance
achieved through simulation studies.

I. INTRODUCTION

1In the past three decades, major advances have been made in adaptive iden-
tification and control for identifying and controlling linear time invariant
plants with unknown parameters. Stable adaptive laws for the adjustment of
paramaters in these cases which assure global stability of the relevant overall
systems are based on properties of linear systems. But very few results exist
in nonlinear systems theory which can be directly applied for the choice of
the nonlinear identifier and controller structures as well as the generation of
adaptive laws for the adjustment of the parameters. Hence considarable care
has to be exercised in the adaptive control of nonlinear systems.

The area of artificial neural networks, in recent years has received consid-
erable attention. Feed forward and Recurrent classes of neural networks,
from a systems theoretic point of view represent static nonlinear maps and
nonlinear dynamic feedback systems rcspectlvcly

Identlﬁcatlon as well as controller structures using neural networks for the

adaptlve control of unknown nonlinear dynamical systems have been.

introduced by Narendra and Parthasarathy [1]. Their unified approach to
the feedforward and recurrent classes -of hetworks through the introduction
of the idea of dynamic backpropagation is remarkable. However, their work
was limited to the adaptive control of inherently stable nonlinear systems as
well as the global stability of the overall systems were not addressed.

The neural adaptive control of nolinear systems is of great importance since
it does not require setting up and solution of complex nonlinear equations. In
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addition, the neural network’s ability to incremental learning motivates re-
search efforts on neural adaptive control of nonlinear systems.

At present, the launch vehicle control is designed by approximating the
plant model as linear models for different time slices. In reality, the plant is
nonlinear in nature due to actuator slew rate limits, actuator saturation lim-
its etc and time varying due to mass, inertia, environmental chémgcs and C.G
migration with time. In addition the plant is uncertain due to dispersions in
thurst-time curves and environmental factors. Hence the nonlinear adaptive
control methodology will improve the control performance substantially since
it can cater to the nonlinear, time varying and uncertain nature of the plant.
Moreover, the fault tolerant nature of the neurul computation makes it ideal
for launch vehicle adaptive control if stability based training methods are
developed.

In this paper, the feasibility of using two adaptive neural controllers for a
launch vehicle autopilot to achieve optimum performance under large plant
perturbations are studied and a suitable neural controller configuration is
evolved and optimality of performance achieved through simulation studies.

2. ADALINE BASED ADAPTIVE NEURAL CONTROLLER

ADALINE, the ADAptive LINear Element was developed by Widrow and
others [2,3] during 1960s and demonstrated its applications to adaptive sig-
nal processing such as adaptive noise cancellation, adaptive channel
equalisation and adaptive linear prediction etc. Basically, it is a single layer
linear (linear activation function) neural network which is an extension of
the single layer perceptron network of Resenblatt [4]. The basic structure of
ADALINE is shown below in Fig. 1.
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where, x(k-1) = x,k-1) x,(k-1)............ x (k-1)J" is the input vector at time
instant (k-1) w(k-1)= [w, (k-1) w,(k-1)......... w, (k-1)]" is the weight vector at
time (k-1) Y (k) : the predicted output at time k.  y(k) : desired/ actual output
attime k. The delta rule learning is developed by Widrow and Hoff [3] and is
also known as the LMS algorithm.

The delta rule is a steepest descent gradient algorithm which seeks the mini-
mum of the error performance surface. The error performance surface of
the network in Fig. 1 is a hyper paraboloid in (n+1) dimensional space. Itis
important to note that it has only one minimum which is the global minimum
and the orientation of the paraboloid remains fixed in (n+1) dimensional space
if the input vectors and the desired vectors are Jointly stationary which is the
case for time invariant systems. For time varying systems the orientation of
this error surface will be changing with time [3].

Nonlinear relationships between inputs and targets cannot be represented
exactly by such linear networks. But they make a linear approximation
with minimum sum-squared erior [5]. Eventhough, the linear approximation
can degrade performance ‘for nonlinear plants, this approximation is very
important and useful if the nonlinearities are not too severe and also the adap-
tive version of this linear approximation is useful if the plant is slowly time
varying. The obvious advantages are due to the solid theoritical foundation of
the LMS algorithm with respect to its stability and convergence properties.
Because of the above said reasons, the ADALINE based adaptive neural control

scheme is investigated to see whether it can be adopted for launch vehicle
autopilot.

2.1. Neural Adaptive Control Scheme [6]

As discussed above, the plant is assumed to be the linear approximation of
the actual plant at any instant and it is allowed to vary with time. The basic
scheme is shown below in Fig. 2,
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2.1.1. Plant Model

We shall-deal with a linear DARMA (Discrete Auto Regressive Moving Av-
erage) plant described by

A@OYK) = B@UK) covvernirrsemesneneees (1)
where A(q") and B(q") are polynomials defined by,

A(QY) = 148,g" Foreereressressss ABQT e @

B(@") =D, ¢ [ ST +b q™ (3)

With the g, the backward shift operator [ e, qly(K) = y(k-D]. u(k) and
y(k) are the plant input and output respectively.

2.1.2. Assumptions

Three basic assumptions are made on the plant. (a) Upper bounds of the
orders of the plant polynomials n and m are known and are n* and m*. (b)
B(q") is a stable polynomial. (i.e. plant is a minimum phase plant). (c) The
coefficient b, # 0.

Assumption (a) allows the true order system to be overestimated. Although
the neural model of the plant and the controllers depend on n, m; the effect of
using these upper bounds of n*, m* instead of the true values in the neural
networks design is simply that some of the connectipn weights may tend to
zero.

Assumption (b) i}necessary to obtain perfect tracking and closed loop stability
for the proposed neural controller. Assumption (c) is required for the
implementation of the controller.

2.2. Neural Model of the plant

The ADALIN of the form in Fig. 1. is chosen as the model of the plant. The
identification structure is the series - parallel structure used by Narendra [1].
The input vector consists of (n + m) components. These components are the
input-output signals measured at previous instants in the plant. It has only
one output. This model estimates the plant’s regular dynamics and is depicted
in Fig. 3.
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‘The weight vector is .
W(K) = [W)(K), orecrrrrreirennns W, (K), W oK)y e, w7 (4)

and is updated using Widrow-Hoff delta rule as w(k+1) = w(k) + (o e(k+1)
x(k}/ e+ x'(k) x (k)) where a e (0,2) is the learning rate and € is chosen to
be close to zero and is included to avoid division by zero in eqn. (5). y(k) is
the plant response.

2.3. Neural controller

The learning of the plant dynamics by the neural estimator presented above
is used to adjust the connection weights of a neural controller which generates
the control signal u(k). This control signal, when applied to the plant input, is
intended to bring the plant output y(k) to a desired reference signal y*(k).
The controller is shown in Fig. 4.
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The neural_controller consists of a second ADALIN with (n+m} input com-
ponents and one output. The connection weights w’(k) is defined as a function
of the neural model weights as follows.

Wk) = [1, W (k), W, (K),..... W (k), W oK), W (K)]T/ Wn+l(k) ()

2.4, Sequence of actions in the control loop at instant k:

(a) Measure y*(k+1) and y(k). (b) Use the neural model of the plant to
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Compute the predicted output y(k) using the old weights w, (k-1). (¢) Com-
pute the error signal e(k) = y(k) - y(k) and use the delta rule to calculate the
new weights w, (k). (d) Update the neural controller weights w’ (k) using

eqn. (6).
(e) use the neural controller to generate the control signal u(k).

2.5. Closed loop properties

The neural control scheme is stable and proof of stability in available in [6].
Also the control objective is asymptotically achieved.

2.6. Simulation Results
Example:1 (Unstable plant)
Let us consider the following 5th order unstable plant.
B(qh) qt -0.0449 q2- 0.0769 g3 - 0.0349 g* +0.1518 q*

A(gh 1+0.2037 g - 0.7790 q2- 0.3840 g~ - 0.0421 q*+0.0014 g*

Here,n= m= 5, ctis set to 1, € = 0.001. Initial values of weight vector is
choosen as random values. Thé reference signal is a square wave of unit+ 1V
amplitide and period 100 samples. Figs 5& 6 show the reference input and
controlled system output y(k) after about 80,000 iterations. Closed loop
response is stabilized eventhough the plant itself is unstable. Fig 7&8 give

open loop response and control input respectively. The neural network is

able to learn the plant dynamics quite well. The large number of initial itera-
tions are due to the random selection of initial weights.

Example 2

Adaptation - While the plant transfer function changes from a unstable TF
to a Stable TF: initially the plant is chosen as a unstable plant as in example:1.
After the controlled output has converged sufficiently well, the plant transfer
function is changed to a stable TF as below

B(gq") 0.7q'+ 03¢ 2+ 0.259%+0.1 ¢* + 0.05 ¢°*

A(qh) 1-0.7946 q1-0.0358 q?+0.4312 q*+0.0574 ¢*-0.0095q

at the iteration number k = 201. The controlled response and control input
are shown in Fig. 9 & 10. The adaptation transient can be seen at k = 201 and
the adaptation duration is about 40 samples. For a sampling rate of 50
samples / sec, this amounts to an adaptation duration of 0.8 Sec which is a
quite fast.

Example 3

Adaptation while the plant transfer function changes from a stable TF to a
unstable TE: Initially the plant is chosen as a stable plant in example 2.
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After the controlled output has converged sufficiently well, the plant TF is
changed to the unstable TF as in example 1 at the iteration number k = 201,
The controlled response and control input are shown in Fig 11 & 12. The
adaptation duration is again about 40 samples,

2.7. Suitability for Digital autopilot design for Launch vehicle:

The ADALIN based scheme caters to plants for which linear approximation
is valid and the plant TF js of minimum phase.- This scheme is typically
suitable for upper stages of launch vehicle autopilot where the plant essentially
is of minimum phase in nature,

Since it is desired to evolve an adaptive control scheme for non-minimum
phase plants also, another addptive control scheme is investigated in the next
section.

3.DYNAMIC NEURAL UNIT BASED ADAP’I‘IVE_CONTROL SCHEME:
3.1. Dynalpic Neural Unit;

by the fact that biological neuronal systems always function with continous

feedback., One example of such a system is the reverberating circuit in the
heuronal pool of the CNS. The basic structure of one DNU is shown in Fig,

13,
=

]

Fig 13,

linear activation function, The linear dynamics of the DNU can be expressed
in the form of a transfer relation:
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Wika,b,) = V. (&/ Sk = [a+az'+az’]/ [14bz" +b27]

Where, S(k) =[X WS, -6],i=1to nis the neural input to DNU, S& R" are
the inputs from other neurons, W,e R" are the corresponding input weights, 8
is the bias term, V, (k) € R! is the output of the dynamic structure, U(K) € R
is the neural output, a,.=[a  a, aZ]T and b = [b, b,]" are the vectors of adaptable
feed forward and feedback weights respectively. Let us define the vectors of
signals and adaptable weights of DNU as

XKV, =[V,(k-1) V,(k-2) SK) S(k-1) S(k-2)I" (8)
W(a, b,) = [-b-b,a a a] ')
Vl(k) =W'X (10)

The nonlinear mapping operation on V, (k) yields a neural output U(k)
given by
UK) =vlg V K] (11)
Where y [.] is the nonlinear activation function. Adaptation of parameters

of W results in synaptic adaptation and adaptation of g, results in somantic
adaptation.

3.2. Learning and Adaptive algorithm of a DNU:

If the weights of the DNU are considered as the elements of a parameter
vector W (a,b,), then the goal of the learning and adaptive algorithm is to
determine the vector W* (a_,b, ) which optimises a performance index J based
on the output error. This learning process will cause the neural output U (K)
to iteratively approach the desired state Yd (k). Let us define the error as e(k)
= Yd (k) - U(k) and the performance index

] =%E({e(k: W(a, b)) (12)

has to be minimised with respect to the weighting vector W (a,b,,). E is the
expectation operator. Thus the back propagation based adaptation alogorithms -
[7] can be written as

ay; (k+1) = ap(k) +pai E {e(k). g, ¢’ (1)} g, X(k-l) (13)

i=0,1,2

by (k+1) = by, (k) Hibj  Efe(k) 5, ¥ ) () Vi(kj)  (14)
j=12

g (k1) =g, [14,  E{e(®) ¥’ (v) v,(R)}] 13

where pai, pubj and M, are learning rate constants. The learning and
representation abilities of a single DNU are much higher compared to a
conventional neuron by virture of its proposed structure.

3.3. DNU for adaptive control

Gupta and Rao [8] have demonstrated the application of DNUs for the adap-
tive control of linear and nonlinear systems. Their aim was to show the faster
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adapting rate of the DNUs for adaptive control. For this, they have chosen
the simple inverse dynamics adaptive control scheme and did not use any
identification model. ’

The inherent assumption in this kind of scheme is that the Jacobian of the
plant do not change sign for various ranges of input-output. Also the plant is
assumed (o be a stable plant. These restrictions on the plant clearly indicate
that the inverse adaptive scheme which they had used cannot be applied for
general unstable, nonminimum phase plants.

However, the fast adaptation abilities of DNUs demonstrated by them may
be quite useful for a suitable alternate adaptive control scheme. This is the
motivation to search for a suitable adaptive control configuration which can
accommodate. general unstable, nonminimum phase plants and make use of
the fast adaptation characteristics of the DNU architecture. The DNU
architecture can be viewed as a general feed back nonlinear dynamical sysiem
with the ability of very fast adaptation.

4. NEURAL ADAPTIVE CONTROLLER FOR LAUNCH VEHICLE
DIGITAL AUTOPILOT [9]

The general block diagram of Launch vehicle control scheme in one of the
three planes (pitch, yaw & roll) is shown in Fig. 14. In this, the inner loop
conttrol is mainly for stabilizing the vehicle and deals with"the short period
dynamics and the outer loop control is the guidance loop which deals with the
long period dynamics. Theé inner loop control is termed as the Autopilot loop.

Attitude rate, veloal ty,
i lataral acceleration eto.
Nuvigation

VERICLE

Artaibu en o
¥ilsas Tramsrmmdon |

Lateral
acoslaration
Filtar Mear

Rate

[ntti tude foed back)
o =3 (boty ,.,,,T T

- IMNER LOOP

e

OUTER LOO P

Guidancs Algerithm [—

Fig. 14,

Here, the digital autopilot of a satellite. launch vehicle in the yaw plane is
considered. Specifically, the plant transfer function at high dynamic pressure
region of flight is considered,
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4.1. Plani model

The full plant model is described by a 23*23 system matrix in continuous
time state space representation in yaw plane which considers flexibility of the
vehicle also. This involves 23 state variables. They are
1) Attitude (y)

2) Rate ()

3) Drift (V/U) V. lateral velocity U, : axial velocity
4)-8losh 1 - displacement : (1,)

5) Slosh 1 - rate : (11,)

6) Slosh 2 - displacement : (H,)

7) Slosh 2 - rate : (J,)

8, 9) Slosh 3- displacement & rate ( 1,y 1, )

10,11) Slosh 4 - displacement & rate ( 4, pd’)
12,13) Bending mode 1 - displacement & rate (q,, q, )
14,15) Bending mode 2 - disp & rate (q,, q, )
16,17) Bending mode 3 - disp & rate (q,, q,}
18,19) Bending mode 4 - disp & rate (q,, q,)

20, 21) Bending mode 5 - disp & rate (q,; q,)

22) Actuator command - (8c)

23) Actuator command rate - (8¢)

The state variables the correspond to the rigid body dynamics are S1.Nos
:1,2,3,22,23 from above. The four slosh modes are induced by the liquid pro-
pellant stages. These modes are negligible for the considered flight which is
assumed to be a solid propellant stage. Also out of the 5 bending modes, the
two predominant modes BM1 & BM?2 are only considered for the flexible
body case of the above flight. Thus for the rigid body case, slosh modes and
bending modes are not considered which result in 5 state variables and hence
a 5*5 system matrix. Similarly, the total number of states considered for the
flexible body case is 9. The corresponding system matrix is 9*%9. The state
space representation of the vehicle model is as follows

X=AX+BU
Y=CX + DU

Where A, B, C, D are system matrices. X : state vector, U : is the input : 8¢
Y : output vector : [y w]*

4.1.1. Discretization of the plant model

Continuous time state space A, B, C, D matrices of the reduced order cases
are converted to continuous time transfer functions first. Then continuous
time transfer functions are converted to discrete time transfer functions using
20 ms sampling time and zero order hold mcthod The two d)gc,;'e time
transfer functions are LT £
a) attitutde output / actuator command I/P = y/ 3¢” . ' '
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b) attitude rate output / actuator command I/P _ Y/ &

They are of fifth order for rigid body case and of n.ineth order for the flexible
body case which are considered here. The discrete transfer functions thus
obtained were found to be unstable as well as nonminimum phase for both
© cases.

4.2. Selection of Neural control configuratidn for Digital Autopilot design of
a Satellite Launch Vehicle ~

The ADALINE based neural scheme cannot be used for this application
since the plant is of nonminimum phase type. The Adaptive control schemes
used by Gupta and Rao [8] cannot be used here since the plant here is unstable
and nonminimum phase. Also, the adaptive control schemes proposed by
Narendra and Parthasarathy [1] cannot be used here since it is not practi-
cable to have a neural identification model for a unstable plant. Also in the
design of Digital Autopilot for a Launch vehicle, stability of the closed loop
System is atmost essential. Hence it is desired to design a conventional linear
feedback controller to ensure stability of the closed loop system utilising the
available knowledge of the plant. Thus a conventional linear output feed back
control technique is adopted for the stabilization of the plant. This controller
configuration is shown in Fig. 15,

Position feed-
| back filter

command . (1st order) y
input

.G
i o/p

Rate feed
K

back filter <
(1st oxder) "

thr

Fig. 15

The typical values of the coefficients of the controller and plants are given
below. ka = 0.477, Position gain ky = 1.0, Rate gain kr = 0,645

o 0.52+ (0.33z"'- 041z /(1-0.57z" - 0.15 %) + (0.001 2" /(1-0.99z1)
wy = 0.59-Q51z' / (0.59 -0.51z1)
Gy, = 0.22-0.1621/ (1-0.94 zh)

i nn

67

Page 105



Mohanlal PP, Harisankar M., Dasgupta S.

and the rigid body nominal plant TFs are
0 +0.0002z" + 0.001 z2 - 0.0002 z* - 0.001 z* -0.0001z*

The linear output feedback controller is designed for the nominal TF of the
plant. Once stability of the closed loop system is achieved by the proven
linear feedback technique, it is logical to think of an additional neural
controller which can be added to the scheme in fig. 15 specifically for the
purpose of on-line performance optimisation for the expected extremes of the
plant TF perturbations. Itis with this logic, the following way of adding the
neural controller to the linear feedback stabilized system is suggested.

4.2.1. Neural controller in shunt with the forward path filter

The overall configuration with the neural controller is shown in Fig. 16.

Neural
> Controll

Fig. 16.

This location of the neural controller requires only a simple 3 DNU cascade
neural controller compared to other possibilities. DNU based neural controller
is chosen in order to exploit the fast adaptation capability of the DNU structure
explained as before. :

In this configuration, the input to the neural controller is the error signal
from the linear controller. The error index to be minimised is
|leol] =Va{8c-y]2. The sign of the jacobian of the plant oy is du_computed
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during every iteration and used with standard back propagation algorithm to
adapt the DNU controller to minimise the error index above.

The neural controller which is in shunt with the forward path filter actually
auguments the forward path filter dynamics to achieve the required closed
loop performance optimisation.

4.2.2. Simulation procedure -

First, small random weights were assigned for the neural controller, The
plant is chosen as the nominal rigid body TF. Then the neural network is
trained for sufficient number of iterations until the output response becomes
satisfactory. The set of final weights so calculated is taken as the starting
weights for all perturbation studies. Hence the adaptation of the neural
controller weights for plant perturbations is from a initial nominal optimised
weights learned sufficiently well earlier. This is a logically acceptable
procedure since the nominal plant TF is always known and is the one used for
conventional linear feedback controller design.

The performance analysis is carried out by simulation studies with the ref-
erence input chosen as the unit step input for the convenience of performance
comparison.

4.2.3. Simulation Cases  Rigid body cases and performances

a) Nominal rigid body Figs 17&18 (Kr = 0.645, Mo =-1.2)
b) With high angley of attack Figs 19&20 (Kr = 0.645, po = -2.4)
. ©) With lower angley of attack Figs 21&22 (Kr = 0.645, po=-0.6)
d) With lower rate gain Fig 23 (Kr = 0.5, po=-1.2)
e) With higher rate gain Fig 24 (Kr = 0.8, Ho=-1.2)

poe: angley of attack coefficient

Flexible body cases and performances

a) Nominal flexible body plant (actuator BW = 5Hz & damping = 0.7)
- . Figs 25 & 26.
b) With reduced actuator bandwidth (actuator BW = 2.5 Hz & damping =
1.0)
Figs 27& 28,
¢) With the two bending mode frequencies reduced by 15% from the nominal
(W,=0.85W* W, =085 W,*)
Figs 29 &30.
d) With the two bending mode frequencies increased by 15% from the nominal
(W =LISW* W, =115 W, *)
: Figs 31 & 32. .
Where W * and W, * are the nominal first and second bending mode fre-
quencies respectively.
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5. CONCLUSION

The 3 DNU cascade neural controller and the new method of augumenting
the linear output feedback control configuration is proved to be very effective
by simulation studies for the adaptive control of satellite launch vehicle auto-
pilot. This is evident from the performance summaries given in section IV.
The scheme developed is particularly important since it caters to unstable
and non minimum phase plants.

For flexible body cases, the bending mode responses could not be suppresses
using the present error norm used for the neural controller. However the
neural controller has not worsesed the bending mode response. Suitable modi-
fication of the error norm may result in proper attenuation of the bending
mode response.

The control scheme developed will cater to nonlinearities of the plants since
the controller itself is a nonlinear controller. However noanlinearities have
not been simulated. Stability analysis of the overall system during adaptation
and guaranteeing global stability of the system are being investigated. Study
can be extended for full flight duration.

i ————
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