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In this paper, Takagi Sugeno Kang (TSK) fuzzy modeling and Exact Fuzzy modeling
methodology for nonlinear MIMO dynamic systems are used to model the bench
mark nonlinear system, Inverted pendulum on cart and cart drive dynamics. The cart
drive dynamics is modeled as a nonlinear second order system with input saturation
and nonlinear spring. Nonlinear optimal control methodology based on TSK fuzzy
model is used to design the optimal controller for above system. The controlled system
stability is ensured by the Fuzzy optimal control theory. The simulation results are
compared with a linear optimal controller and the performance improvement

demonstrated.
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I. INTRODUCTION

There are several approaches for the control of a nonlinear
system. A typical and simple approach is the feedback
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stabilization of nonlinear systems where, a linear feedback
control is designed for the linearization of the system about a
nominal operating point. This approach however only renders
a local result in general. Other approaches such as feedback
linearization would normally require a considerable degree of
sophistication and tend to result in rather complicated
controllers.

The fuzzy controllers, in general is a model free approach
for controlling nonlinear and uncertain plants. The first
generation (Mamdani) fuzzy modeling and control approach
belongs to the above class. The first generation fuzzy control
mainly focused on translating knowledge expressed in
linguistic form to a control algorithm which is practically
implimentable. Many real life systems implemented the
Mamdani type fuzzy control and found to have very good
performance and robustness. But a control system theoretic
approach to analyse the stability and optimality issues in the
Mamdani type fuzzy control has been found difficult and
impossible. Formal analysis method requires a model based
approach. TSK fuzzy model is a second generation fuzzy
modeling approach which uses fuzzy blending of linear models
to represent any nonlinear plant. This approach has enabled
system theoretic aspects such as stability and optimality
analysis possible.

In TSK fuzzy[4] modeling the nonlinear plant is first
approximated by fuzzy blending of different linear models in
different state space region. In TSK model based control
design, for each local linear model a linear feedback controller
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is designed and the overall controller is synthesized as a
fuzzy blending of local linear controllers. The overall controller
is nonlinear. This approach of fuzzy controller design is called
Parallel Distributed Compensation (PDC)[6] developed by
Wan, Tanaka and Griffin. The stability analysis for PDC is
well developed. Optimal controller design based on TSK fuzzy
model was developed by Wu and Lin [3], using principles of
dynamic programming. In all these cases the key is the
accuracy of the fuzzy model obtained for the true system on
which stability and optimality results rests. Exact fuzzy
representation of a known scalar function was derived by
Watkin and Kosko[1,8]. The exact fuzzy modeling for nonlinear
MIMO dynamic system was developed by Mohanlal and
Kaimal[2]. In exact fuzzy modeling instead of local linear
models, boundary linear models are used for fuzzy blending
to exactly represent a class of nonlinear systems. All the
stability analysis and optimal control results are directly
applicable to the exact fuzzy model based fuzzy controller
design.

TSK fuzzy modeling and exact fuzzy modeling of nonlinear
dynamic system is given in section II. Stable and optimal
controller design is described in section III. Optimal controller
design for Pendulum on cart system with nonlinear cart drive
dynamics is developed in section IV.

II. TSK Fuzzy MODELING

In TSK fuzzy modeling [4] nonlinear system is
approximated as a convex sum of local linear systems. In
general this fuzzy modeling for a system represented by state
equations, with n states, is of the form Rule i: If x (1) is M,
x(H)isM, ...... x(t)isM, then X (t)= AX () + Bu(),
for i = 1,2.....r, where ‘r’ represent the total number of
subsystem considered (that is the total number of if-then
rules ) and M, is a fuzzy set.

The overall fuzzy model is achieved by fuzzy blending of
these linear system models. For a given X, u the final fuzzy
system is inferred as

S, (XA X (@) + Bu®)

X(t) — i=1 _
2w (X

2.1

where w,(X) = H M, (x,)20,i=l..r is called the
j=1

weight. Each weight w(X) is a function of X, which makes
the blended system nonlinear. Mij(xj) is the grade of
membership of xj(t) in M. Each linear component
AX (1) + Bu(r) is called a subsystem. Eqn (2.1) can be
rewritten as

X0 = Y h()[AX(@) + Bu(r)]

i=1

4
Zhl.(x)= Lh(x)20 My
i=1 '
From Eqn. (2.2) it is evident that the overall system is
convex sum of r subsystems. The convexity property is the
key for stability analysis and fuzzy optimal control results.

A. Exact Fuzzy Modeling

General TSK fuzzy modeling results in an approximate
model for the nonlinear system, even in situations where the
nonlinear equations are known apriori. If the nonlinear
equations are known apriori, we can utilize blending of
boundary linear models [2] for exact representation of
nonlinear systems. This exact fuzzy modeling is an extension
of the exact fuzzy representation of a scalar function{1.8].

According to Watkins's: A model needs just two rules
to represent any bounded non constant scalar function
f: R — R. This represents f in to two parts A, and A,
(A, is the complement of A part).

Theorem: A SAM F: R — R with tworules of the form

"IfX=A thenY =B," and "if X= A, then Y=B," can
represent a bounded non constant function f: R R in

the sence that F(x) = f(x) for all *x belonging toR.’

If we have full knowledge of the function, that is the
function itself and its bounds (Boundedness: lets us define
the lower and upper bounds as & and 3 respectively) then
define the set function of then part set A as

= fx)
M (x) = %“ 2.3)
The set function of then part set A, as
M,(x) = 1-M (x) (24
We can get back the function f(x) by
M, (o + M, (x)
f&x)=— : (0B 2.5)

M, + M,

B. Extension to MIMO Systems

The result of section II-A was extended to dynamic
systems [2]. Nonlinear dynamic system of the form
X = AX)X + B(X)U where X € R" is the state vector,
U € R" is the input vector, m < n, and A(X)e& R"" and
B(X) € R™™ and elements of A(X) and B(X) are scalar valued
functions of the state vector: then there exist convex weighing
functions A, such that the system can be represented as

n
X = i h{AX + BU] where p € n° + nm and Eh‘ =1

i=1 =1
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and 0< hi< [foralli=1.2...p.(A,, B) are linear subsystems
constructed using the bounds of the scalar valued functions
in A(X) and B(X).

IT1. StaBLE AND OpTvAL CONTROLLER DESIGN

Stability of TSK fuzzy model for continuous and discrete
time has been developed by Tanaka and Sugeno[7] based on
linear matrix inequalities (LMI). This is an extension of classical
Lyapunov inequality in linear controller design. The PDC
based fuzzy control design and the stability analysis was
developed based on LMI. Optimal control result for TSK was
developed by Wu and Lin [3] based on dynamic programming.
We utilize these results for the fuzzy controller design for
inverted pendulum on cart, for which exact fuzzy model have
been developed in this paper.

A. Parallel Distributed Compensation

The idea is to design a compensator for each rule of the
fuzzy model. The fuzzy controller shares the same fuzzy sets
with the system. For each rule linear control design techniques
can be used. Here for each rule the controller designed is a
linear feedback controller. The resulting overall controller is a
fuzzy blending of each individual controller and it is nonlinear
in general even though the individual controller is linear.

Consider the system with rule i: If x,(1) is Mu’ x,(t) is
M,... x,(t)is M, . Then the controller for this rule is

(1) = -FX (1) 3.

The overall controller is a fuzzy blending of these
individual controllers, hence the overall controller output is

“Sw(X)F X ()
u(t) = el -
S ) (32)
u® = - hX)EX @) (33)

i=1

From (2.1) and (3.3) the controlled system can be
represented as

-y 3 1 (X) w;(X)(A - B,F) X(t)

i=1 j=1

> 3 w0 w, () 4

i=1 j=1

X(@) =

This is a convex sum of fuzzy systems ¢, = (4, - BF).
For continuous time systems the overall system will be stable
if there exist a common positive definite matrix P such that
¢, P+P'¢, <0,i,j=1,2,..r Henceifall these subsystems
are stable the overall system is stable. For discrete time
systems the stability of the sub systems does not ensure
stability of the overall system. The controlled closed loop
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discrete time system is stable if there exists a positive definite
matrix P such that l,l/ijTPl,l/‘.j -P<0,,j=12,..r, where
is the system matrix. In general r? inequalities are to bé
satisfied for the overall system to be stable.

According to optimality results from local concept
approach [3] the overall optimal controller is a convex sum of
r optimal feedback controllers instead of r2 systems in (3.4).
Hence we can write the overall controlled system as

X0 =3 h(O(4, - BF)X (1) 65)

Thus with local concept approach the stability analysis
of overall controlled system is simplified. The stability of the
controlled system is derived in [3].

B. Optimal Controller Based on TSK Fuzzy Model

For the fuzzy system in (2.1) and controller in (3.5), if all
Al,, Bi matrix is completely state controllable and all states are
observable and if Q and R are Positive Definite weighing
matrices for the state and input and if all subsystems are time
invariant then there exists a unique symmetric positive semi-
definite solution 7', of steady state Ricatti equation:

ATK +KA ~KBR'B'K+Q =0 (3.52)

The asymptotically local optimal fuzzy control law is
u (t)=-B/R'n'X" (t) i=12..r

u'(t)=-FX (1) (36)

X (t) indicates the optimal trajectory. The i" optimal
local feedback subsystem is, X'(r)= (A,. —B,.F;)X*(t)
asymptotically and exponentially stable.

For the controller in (3.6) if A, B, are completely
controllable and all states are observable then the overall
fuzzy system described by X'(n= Zhi(x‘)(Ai -BE)X"(1)
is exponentially stable. In this work thézz)ptimal fuzzy controller
will be called as Fuzzy Quadratic Regulator (FQR).

It is important to note that the controlled system
performance depends on the accuracy of the fuzzy model
based on which the optimal design is carried out. Since in this
work optimal control design is based on exact fuzzy model,
the performance will be better.

IV. ExampLE oF OpTrvaL Fuzzy CONTROLLER

A. Nonlinear system model for pendulum on cart
The equations of motion of Pendulum on cart system is
G 85in0—aml®’ sinfcosf - aucos §

51 —amlcos® 6

. (4.
i=gq {u +mlB*sin@ —mlécos@}
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Where, g: acceleration due to gravity, a=

M: mass of cart, m: mass of pendulum, 21 : length of pendlﬁgrln,

u: control force. x, %, ¥ : Position, velocity, acceleration of the

cartrespectively. §,6,4 : Angular position, angular velocity,

v, angular acceleration of the pendulum respectively. Linear Cart

| dynamics is i+ 1971 +367%u = 362% x15v , Here v s the
control voltage. The cart system natural frequency w, is
assumed to be 617 and the steady state gain of the system is
taken as 15.

In this work the nonlinearities of cart dynamics is also
considered. The main nonlinearities to be included are input
saturation and nonlinear spring. Hence the nonlinear cart
dynamics can be expressed as

i +19mi - f, (u)u =f7(v,vsat)v “2)
Where the function f(.) represents the effect of input
saturation and the function f-) shows nonlinear spring effect.
Input saturation accounts to the inefficiency of the system
to respond to an input value above a specified limit. We had
modeled input saturation as a reduction in function £ () as

the input is above the saturation limit.
if (v > vsat)

{

367m* x15x v,

f = " (4.3)
else
f, = 36m* %15 (4.3a)

The function f{-) is modeled in two ways in this paper.
Casel: As an inverted bell function which shows an increase
in stiffness as the displacement increases above a limit. Here
the representation is as follows

: -

2
+367°

36
-2b 44)
()
L J

where ' and 'b’ control the slope and spread of the bell
curve. The plot for this function is depicted in figure 2.

fg(“)=_

Case2: f{u) is modeled as follows

if(u>U)
f‘;(u) = —2)(367[2 else (45)
fiw) = =367

where U is the limiting value of u above which the spring
is assumed to be nonlinear.

B. Selection of Auxiliary Functions

The modeling in this work rests up on selecting proper
boundary limited functions. je auxiliary scalar functions has
to be identified.

The equations of motion of pendulum on cart can be
arranged in such a way that they can be rewritten 1n terms of
following scalar valued auxiliary functions f{ 8. f.10.6).
5 (O)f B)ﬂ (9, 9).]‘; (0).f. {v.vsar S fituas tollows

8

Al
£(8)6+ £,(6.6)6 + £,(6)u

£(0)6+ £,(6.6)6+ f,(6)u

ti = f, (vivsat)v =197 + £, (u)u

For the simulation purpose the values taken are M = 3Ky,
m=2kg, 2l = Im, g = 9.81m/s’ then the auxiliary functions
become

8(2~.3cos* 0)
v -0.30sinBcosd
- ,9 B e
f (6 ) (2-.3cos: 9)
-0.3cosg

0)= —n-—
£(9) (2-.3cos’ 0)
£.(0)= -0.3gsin@cosg
(0) = ——=_ 127

9(2—.3(:05:9)

The functions f. (v, vsar) and f, (u) are as shown in
equations. (4.3) and (4.4) or (4.3} and (4.5). The twtal
system can be represented in state space with six state
variables: e,é,_y,.t u a0 and input v. The general form is
X =A(X)X +B(X)v with X, A, Bas follows

X = [9,9,.t..!3,zt,1i][

"0 0 0 0 0
fi £ 00 /0
A0 0 000 1 o
CMf 00 5 0 %
0 0 0 ¢ O i
00 00 f -7

BL=[0 0 0 0 0 f£]

C. Premise Variables for Exact Fuzzy Modeling

In general for TSK model states are used as premise
variables for modeling, in this work auxiliary functions are
used as premise variables. Each of the scalar auxiliary functions
requires 2 membership functions to represent it exactly in the
defined domain. Hence there will be 16 membership functions
and they are represented as

69
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n= IB‘JB _{ﬁ;{(’\)’M
J 7

Where B; = max(f;) and a; = min(/f))

Since there are 8 auxiliary functions and each has two
membership values we need 28 =256 rules to exactly represent
the system. The 256 rules are formed in such a way that

Ini® rule, if function ]j is Mj ; then ]j is replaced with o, in
A, and B, and iffj is sz then f, is replaced with ,Bj inA andB,
The corresponding convex weighing function will be the
product of corresponding membership function values. For
example the rule 1 can be

Rule 11 Iff()is M, andf)( ) is M, and f,( ) is M,, and

fL)is M, and ff )is M and f( )is M, and f( )is M,
andfs( )is M81 then the system is

X =A1(X)X+BI(X) where,

M a=l-M,j=1.8

01 00 0 O
o o 00 a O
0 000 1 O
Al)= a, o 00 ¢ O
0 0 00 0 1
10 0 0 0 & -197|

B()=[0 0 0 0 0 q]

The corresponding convex weighing coefficient is
8
hl(X)=il:I‘Mn(X)

In a similar manner we can represent the 256 subsystems
and their weighing functions.

D. Controller Design

For each subsystem (1-256) the controller is designed with
the optimal control result explained in section III-B. For each
subsystem model the controller gain F, is computed. The

optimal global feedback fuzzy system is
256

X'0=Yh(X)A-BFE)X (1)
i=1
The Q and R values selected for design are

00000

(=R Rl ol -l
O O O O
S O O O
o O O O

0
1
0
0

o O O O

000000

This optimal global feedback fuzzy system is optimal in
the sence that it is based on exact fuzzy model of the system
considered in the domain of interest.
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Y =[6, é,u,v,vsat]

Fig 1: Pendulum on cart with Fuzzy Quadratic Regulator.
F’s represents each controller gain and h(X)’s the weighing
funcnons At each time instant various h(X)’s are computed

and the controller output is computed as V. ——Zh JEX(r)

V. SIMULATION RESULTS

The optimal controller designed in sec IV is used to
control the pendulum on cart system in the restricted

domain —0.5rad <0 <.Srad> -15rad/s<0<15rad/s »
-12<u<12 and Vsart= 10

The simulation results for desired pendulum angle 6 =0
and cart position X = 1m are given.

Fig 2 shows the approximated nonlinear stiffness function
of eqn. (4.4). Fig 3 and 4 shows the pendulum angle and Cart
position respectively in this case for both LQR and FQR.
Fig 5 and 6 shows the Cart position and pendulum angle
respectively for both LQR and FQR, for the case where the
nonlinear spring assumes the function expressed in eqn. (4.5).

-350

-400

-450}

-500

f8(u)

-550

15 -10 -5 0 5 10 15
control force u
Figure 2. Bell shape function approximation of nonlinear spring
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Figure 3. Pendulum Angle versus Time
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Figure 4. Cart Position versus Time
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Figure 5. Cart Positions versus Time
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Figure 6. Pendulum Angle versus Time

The performance improvement in terms of reduction in

peak overshoot, undershoot and settling time for FOR is
evident from the above results.

V1. ConcLusions

Optimal fuzzy controller (FQR is designed for inveried
pendulum on cart based on exact fuzzy TSK model. The Curt
dynamics is also modeled as nonlinear. The results of FQR
are compared with that of LQR. The performance improyement
confirms the fuzzy optimal control methodology based on
exact fuzzy model,
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