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Abstract:

Programmed PWM schemes require many waveforms to be stored in memory for varying values of output
fundamental magnitudes. It is only useful for harmonic reduction when the drive is operating in the steady state
and not for operation in the transient state. The applicability of Neural Network for harmonic reduction in PWM
inverters is established to handle the continous variation of output fundamental amplitude.A method suggested
to incorporate the random phase modulation of the swilching angles with the Neural scheme to smear the

concentrated energy at the switching frequency.The limitation of the random modulation ,specially at low
control ratios and the usefulness of the Neural scheme are brought out.

INTRODUCTION

The purpose of PWM (pulse width modulation)
in inverters is to change the ratio of the fundamental
of the ac voltage to the de¢ voliage . Some of the
modulation  schemes employed are endpulse
modulation  centrepulse  modulation,sinusoidal
PWM,stair case PWM etc.The switched waveforms
in these modulation schemes contain low order
harmonics which are often unacceptable.All these
modulation schemes maintain symmetry in the
switched waveform due to which the even harrhonics
will be absent. A typical switched waveform of
single phase is shown in Fig. 1 in which symmetry is
maintained. By reversing the phase potentials a
number of times during each half cycle , the Spectra
of harmonics can be changed in such a way that some
low order harmonics troublesome to the load are
cancelled where as some higher order harmonics
which are less harmful increase in magnitude., The
notches are placed symmetrically about the centre of
each half cycle to maintain symmelry.

A waveform with the angles of reversal equal to
@,,0,,0,.....,a, has the following rms values of the n
th harmonic veltage

Uln) =(045/n ) u,{2(cos ng, - cos noy, + cos na, -
wa) =1} ... 1

where U(n) :amplitude of n th harmonic
u;  :Input DC voltage
n : harmonic number
Y (control ratio) : (actual fundamental / fundamental
of unmodulated wave )

For example, control of the fundamental and
cancgllation of the 5 th and 7th harmonics will result
in the following system of nonlinear equations[4] .

2(coso,-cosay+cosa,) -1 = Y Rrrorreroryd {2)
2 (cos 5o, - cos S, +cos Sa) -1 =0 ... J)
2( cos et -cos 7oy, +cos Tar) -1 =0................ (4)

Each of the reversal corresponds to one degree of
freedom , making it possible either to cancel a
harmonic or to control the fundamental voltage.In
programmed PWM , the switching angles from
Equations. (2) - (4) are precomputed numerically for
different discrete values of y and stored for use.
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Fig. 1, PWM switched waveform for half period (y = 0.37)

This requires many waveforms to be stored in
addition to other limitations.

If we choose an even number (p) of swilching
angles, there will be {p-1) number of odd harmonics
below the switching frequency f,=( 2 p+1) f, where
f is the fundamental frequency. Now we can have p
number of equations of the type (2) - (4) with p
unknown switching angles ( o, , o, , oz, ... o, ) for
a given value of control ratio. Thus for a given
control ratio,p switching angles can be solved from
these equations to null all the (p-1) odd harmonics
below the switching frequency.This will result in no
harmonics energy below switching frequency.

DESIGN PARAMETERS AND TRAINING
DATA FOR NEURAL NETWORK.

In this study, p= 12, f = | rad/sec, f,= 25 rad/sec
There are 11 odd harmonics below f, to be nulled .
12 equations of the type (2) - (4) are formed and
solved using gradient method for y = 0.02, 0.04, 0.06,
0.74 to get 12 switching angles for each value
of y. This data set is used to train the Neural
Network.Sample data in degrees, fory = 0.02 to 0.20
are tabulated in Table.| .

TRAINING OF NEURAL NETWORK

It is well known that suitably selected feedforward
neural network can approximate any arbitary
nonlinear static mapping with desired accuracy.When
the training data spans the input space reasonably, the
network can interpolate the function quite well for
untrained inputs.Multilayer feedforward and Radial

basis networks are commonly employed for the
above purpose.

Radial hasis networks require less training time
and interpolate well if the training data spans the
input space uniformly. For this application, the radial
basis network was found to be more suitable from the
point of view of training time,interpolation accuracy
and number of neurons.The basic form of the radial
basis neural network with r-inputs, m-outputs and
g-radial basis neurons is shown in Fig. 2
Orthogonal least squares training algorithm [1] is
used for the training of thé network.The spread
constant is chosen as 0.08. The sum squared error
could be reduced to less than 10e-10 with just 29
neurons in the radial basis layer.

Training inputs are the different ¥ values from
0.02 to 0.74 . For each scalar input, there are 12
outputs (Q, ,C, ,....04,,) which means that 12 neurons
in the output layer.The training data generated is used
to train the network. To assertain the interpolation
accuracy, the test data set is generated as follows. For
Y= 0.01,0.03,......0.73 , the comresponding firing angle
vectors are again computed by gradient method and
used to test the network for interpolation accuracy.

This sample data for y = 0.01 to 0.19 are tabulated
in Table 2. Fig. 3a, 3b and 3¢ give the training error
and interpolation accuracy respectively for training
inputs and test inputs. The interpolation error is less
than S5e-5.
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Fig. 2 , Radial Basis Neural Network.

Where,

C,.C,,.C, are radial centres of dimension R'

§) 485 ,-.5, are the Euclidean distances between input
and radial centres.( i.e. 5, = input -'C, etc.).

radbas(s, ,b,,) = exp(-( b,,*s,)?)

b,.b;,..b, o« = (0.8326)/(spread constant)
by,.b,;.....b,,, : bias inputs

SIMULATION AND ANALYSIS OF
SWITCHED PWM WAVEFORM
I

Three control ratios (y=0.01, 0.37 ,0.73 ) are
chosen to lest the Neural Network based PWM
switching scheme. 1t is to be noted that the network
was not trained for these inputs.Fig 5a , 5b and 5¢
give the spectral output of the switched waveform .
The harmonics below switching frequency are almost
invisible. The linearity of the output amplitude with
wespect to the control ratios is given in Fig 4.

SIMULATION OF RANDOM MODULATION
OF SWITCHING ANGLES AND SMEARING
OF SWITCHING TONE ENERGY

In {2, 3], random modulation of the carrier of the
sine PWM was used to reduce the acoustic noise in
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PWM drives.The idea is that using random
modulation, the energy concentrated at switching
frequency can be made to spread over a desired
frequency range.This is acheived with the average
switching frequency the same as the unmodulated
case,unlike other schemes where switching frequency
is very high.

In the present Neural Net PWM , to acheive
random modulation, uniformly distributed,amplitude
limited ( -7 to 7 ) , zero mean random sequence is
generated and added to each phase angle output of
the Neural Network. The resulting PWM waveform
will have average switching frequency same as the
unmodulated case.The spectral analysis of the output
waveform with random modulation is given in Fig 6
a, 6b and 6c for the three cases for which the
unmodulated spectra are in Fig 5 a ,5 band 5 ¢
respectively. Ty

Here, for ¥ = 0.73 , the random modulation is
found to be useful. Where as for y = 0.01, the random
modulation makes the output completely useless.For
Y = 0.37, the effect is moderate. This means that
random modulation is useful only at higher control
ratios in PWM drives.



DISCUSSION AND CONCLUSIONS

The Neura] Network based PWM switching
scheme has good linearity and harmonic rejection.It
has the ability of real time and continous output
amplitude control. Random phase modulation can be
incorporated with the Neural scheme to spread the
energy concentrated at switching frequency
eventhough random modulation is useful only at
high control ratios.

The switching frequency can be increased by
increasing the number of phase angle reversal points.
For example, with p = 24, f nearly doubles (, 49
rad/sec) .Since all the harmonics below switching
frequency can be nulled, it is desirable to choose an
appropriate value of p such that the resulting
switching frequency does not harm the load. This is a
better scheme than the random modulation method
since the later is not useful at low control ratios.
However, the option of random modulation can be
retained with Neural Net based PWM .

The Neural Net based PWM is better than
programmed PWM due to its capability to handle
continous amplitude control. It is also better than the
random modulation scheme since the later is not
useful at low control ratios. The hardware
implementation aspects need to be explored.
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Tabie. 1 { SampleTraining Data )

7211 7222 7.232 7.242 7.252 7261 7269 7278 7285 7.292
14376 14352 14.327 14302 14.275 14.248 14.220 14.192 14.162 14.132
21.633 21.665 21.695 21.725 21.754 21.781 21.807 21.831 21.855 21.877
28.755 28.708 28.661 28.612 28.561 28.509 28.456 28.401 28.345 28.287
36.053 36.104 36.154 36.202 36.249 36.293 36.336 36.378 36.417 36455
43.136 43.071 43.004 42.935 42.865 42.793 42.719 42.643 42.566 42.487
50.469 50.537 50.604 50.669 50.732 50.793 50.853 50.910 50.966 51.020
57.521 57.442 57.360 57.278 57.193 57.107 57.020 56.930 56.839 56.746
64.882 64.963 65.043 65.121 65.198 65.274 65.348 65.421 65.493 65.562
71.912 71.823 71.733 71.643 71.551 71458 71.364 71.268 71.172 71.074
79.289 79.378 79.467 79.555 79.642 79.729 79.815 79.901 79.986 80.070
86.308 86.216 86.124 86.032 85939 85.846 85.753 85.659 85.565 85.471

Table . 2 ( Sample Test Data)
001 003 005 007 009 011 0.3 0I5 017 0.19

7205 17.216 7.227 7237 7247 17256 7265 7273 17.281 7.289
14.388 14.364 14.340 14315 14289 14262 14234 14.206 14.177 14.147
21.616 21.649 21.680 21.710 21.739 21.767 21.794 21.819 21.843 21.866
28.777 28.732 28.685 28.636 28.586 28.535 28.483 28.429 28.373 28.316.
36.026 36.076 36.129 36.178 36226 36271 36.315 36.357 36.398 36.436
43.168 43.103 43.037 42.970 42900 42.829 42.756 42.681 42.605 42.526
50.435 50.504 50.571 50.637 50.700 50.763 50.823 50.882 50.938 50.993
57.561 57.482 57.401 57319 57.236 57.150 57.064 56.975 56.887 56.793
64.841 64.922 65.003 65082 65.160 65.236 65.311 65.385 65.457 65.528
71.956 71.868 71.778 71.688 71.597 71.504 71.411 71.316 71.220 71.123
79.044 79.334 79.423 79.511 79.599 79.686 79.772 79.858 79.943 80.028
86.354 86.262 86.170 86.978 85.985 85.893 85.799 85.706 85.612 85.518
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Fig. 5a, Spectrum of o/p ( y=0.01)
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Fig. 5c, Spectrum of o/p ( y=0.73)
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